84 research outputs found

    Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109954/1/evo12534.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/109954/2/evo12534-sup-0001-SuppMAT.pd

    Ants Sow the Seeds of Global Diversification in Flowering Plants

    Get PDF
    Background: The extraordinary diversification of angiosperm plants in the Cretaceous and Tertiary periods has produced an estimated 250,000–300,000 living angiosperm species and has fundamentally altered terrestrial ecosystems. Interactions with animals as pollinators or seed dispersers have long been suspected as drivers of angiosperm diversification, yet empirical examples remain sparse or inconclusive. Seed dispersal by ants (myrmecochory) may drive diversification as it can reduce extinction by providing selective advantages to plants and can increase speciation by enhancing geographical isolation by extremely limited dispersal distances. Methodology/Principal Findings: Using the most comprehensive sister-group comparison to date, we tested the hypothesis that myrmecochory leads to higher diversification rates in angiosperm plants. As predicted, diversification rates were substantially higher in ant-dispersed plants than in their non-myrmecochorous relatives. Data from 101 angiosperm lineages in 241 genera from all continents except Antarctica revealed that ant-dispersed lineages contained on average more than twice as many species as did their non-myrmecochorous sister groups. Contrasts in species diversity between sister groups demonstrated that diversification rates did not depend on seed dispersal mode in the sister group and were higher in myrmecochorous lineages in most biogeographic regions. Conclusions/Significance: Myrmecochory, which has evolved independently at least 100 times in angiosperms and is estimated to be present in at least 77 families and 11 000 species, is a key evolutionary innovation and a globally important driver of plant diversity. Myrmecochory provides the best example to date for a consistent effect of any mutualism on largescale diversification

    Topological phase transition in an all-optical exciton-polariton lattice

    Full text link
    Topological insulators are a class of electronic materials exhibiting robust edge states immune to perturbations and disorder. This concept has been successfully adapted in photonics, where topologically nontrivial waveguides and topological lasers were developed. However, the exploration of topological properties in a given photonic system is limited to a fabricated sample, without the flexibility to reconfigure the structure in-situ. Here, we demonstrate an all-optical realization of the orbital Su-Schrieffer-Heeger (SSH) model in a microcavity exciton-polariton system, whereby a cavity photon is hybridized with an exciton in a GaAs quantum well. We induce a zigzag potential for exciton polaritons all-optically, by shaping the nonresonant laser excitation, and measure directly the eigenspectrum and topological edge states of a polariton lattice in a nonlinear regime of bosonic condensation. Furthermore, taking advantage of the tunability of the optically induced lattice we modify the intersite tunneling to realize a topological phase transition to a trivial state. Our results open the way to study topological phase transitions on-demand in fully reconfigurable hybrid photonic systems that do not require sophisticated sample engineering.Comment: 7 pages, 4 figure

    Bogoliubov excitations of a polariton condensate in dynamical equilibrium with an incoherent reservoir

    Full text link
    The classic Bogoliubov theory of weakly interacting Bose gases rests upon the assumption that nearly all the bosons condense into the lowest quantum state at sufficiently low temperatures. Here we develop a generalized version of Bogoliubov theory for the case of a driven-dissipative exciton-polariton condensate with a large incoherent uncondensed component, or excitonic reservoir. We argue that such a reservoir can consist of both excitonic high-momentum polaritons and optically dark superpositions of excitons across different optically active layers, such as multiple quantum wells in a microcavity. In particular, we predict interconversion between the dark and bright (light-coupled) excitonic states that can lead to a dynamical equilibrium between the condensate and reservoir populations. We show that the presence of the reservoir fundamentally modifies both the energy and the amplitudes of the Bogoliubov quasiparticle excitations due to the non-Galilean-invariant nature of polaritons. Our theoretical findings are supported by our experiment, where we directly detect the Bogoliubov excitation branches of an optically trapped polariton condensate in the high-density regime. By analyzing the measured occupations of the excitation branches, we extract the Bogoliubov amplitudes across a range of momenta and show that they agree with our generalized theory.Comment: 16 pages, 7 figure

    Angiosperm phylogeny: 17 genes, 640 taxa

    Get PDF
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/1/ajb20704-sup-0010.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/2/ajb20704.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/3/ajb20704-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/4/ajb20704-sup-0016.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/5/ajb20704-sup-0017.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/6/ajb20704-sup-0021.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/7/ajb20704-sup-0003.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/8/ajb20704-sup-0002.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/9/ajb20704-sup-0011.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/10/ajb20704-sup-0019.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/11/ajb20704-sup-0015.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/12/ajb20704-sup-0006.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/13/ajb20704-sup-0020.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/14/ajb20704-sup-0013.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/15/ajb20704-sup-0004.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/16/ajb20704-sup-0012.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/17/ajb20704-sup-0005.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/18/ajb20704-sup-0018.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/19/ajb20704-sup-0009.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/20/ajb20704-sup-0014.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/21/ajb20704-sup-0007.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/22/ajb20704-sup-0008.pd

    Angiosperm Phylogeny: 17 Genes, 640 Taxa

    Get PDF
    • Premise of the study : Recent analyses employing up to fi ve genes have provided numerous insights into angiosperm phylogeny, but many relationships have remained unresolved or poorly supported. In the hope of improving our understanding of angiosperm phylogeny, we expanded sampling of taxa and genes beyond previous analyses. • Methods : We conducted two primary analyses based on 640 species representing 330 families. The fi rst included 25 260 aligned base pairs (bp) from 17 genes (representing all three plant genomes, i.e., nucleus, plastid, and mitochondrion). The second included 19 846 aligned bp from 13 genes (representing only the nucleus and plastid). • Key results : Many important questions of deep-level relationships in the nonmonocot angiosperms have now been resolved with strong support. Amborellaceae, Nymphaeales, and Austrobaileyales are successive sisters to the remaining angiosperms ( Mesangiospermae ), which are resolved into Chloranthales + Magnoliidae as sister to Monocotyledoneae + [Ceratophyllaceae + Eudicotyledoneae ]. Eudicotyledoneae contains a basal grade subtending Gunneridae . Within Gunneridae , Gunnerales are sister to the remainder ( Pentapetalae ), which comprises (1) Superrosidae , consisting of Rosidae (including Vitaceae) and Saxifragales; and (2) Superasteridae , comprising Berberidopsidales, Santalales, Caryophyllales , Asteridae , and, based on this study, Dilleniaceae (although other recent analyses disagree with this placement). Within the major subclades of Pentapetalae , most deep-level relationships are resolved with strong support. • Conclusions : Our analyses confi rm that with large amounts of sequence data, most deep-level relationships within the angiosperms can be resolved. We anticipate that this well-resolved angiosperm tree will be of broad utility for many areas of biology, including physiology, ecology, paleobiology, and genomics

    Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists

    Get PDF
    Closer collaboration among ecologists, systematists, and evolutionary biologists working in tropical forests, centred on studies within long-term permanent plots, would be highly beneficial for their respective fields. With a key unifying theme of the importance of vouchered collection and precise identification of species, especially rare ones, we identify four priority areas where improving links between these communities could achieve significant progress in biodiversity and conservation science: (i) increasing the pace of species discovery; (ii) documenting species turnover across space and time; (iii) improving models of ecosystem change; and (iv) understanding the evolutionary assembly of communities and biomes
    corecore