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Plastid matK and a fragment of the low-copy nuclear gene PHYC were sequenced for 30 genera of Phyllanthaceae to evaluate tribal
and generic delimitation. Resolution and bootstrap percentages obtained with matK are higher than that of PHYC, but both regions
show nearly identical phylogenetic patterns. Phylogenetic relationships inferred from the independent and combined data are congruent
and differ from previous, morphology-based classifications but are highly concordant with those of the plastid gene rbcL previously
published. Phyllanthaceae is monophyletic and gives rise to two well-resolved clades (T and F) that could be recognized as subfamilies.
DNA sequence data for Keayodendron and Zimmermanniopsis are presented for the first time. Keayodendron is misplaced in tribe
Phyllantheae and belongs to the Bridelia alliance. Zimmermanniopsis is sister to Zimmermannia. Phyllanthus and Cleistanthus are
paraphyletic. Savia and Phyllanthus subgenus Kirganelia are not monophyletic.
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Phyllanthaceae are a morphologically diverse pantropical
family of about 2000 species in c. 60 genera. They have been
segregated along with Pandaceae, Picrodendraceae, and Pu-
tranjivaceae from Euphorbiaceae sensu lato (s.l.), following
recent molecular work (Savolainen et al., 2000; APG II, 2003).
The molecular systematics of Phyllanthaceae have been in-
vestigated as part of a larger multigene study on the system-
atics of Euphorbiaceae s.l. The largest sampling used plastid
rbcL sequences, and over 350 Euphorbiaceae s.l. sequences
including 76 (74 taxa) of Phyllanthaceae, to assess subfamilial
and tribal relationships (i.e., Wurdack and Chase, 1999; Wur-
dack, 2002; Wurdack et al., in press). Two clades of Phyllan-
thaceae found in these molecular analyses (Wurdack et al., in
press, and here) are nearly identical to the suprageneric clas-
sification of Webster (1994) and Radcliffe-Smith (2001), but
the remaining clades do not correspond to previous tribal clas-
sifications. For a more detailed history of Phyllanthaceae clas-
sification, see Wurdack et al. (in press).

The matK gene is one of the most rapidly evolving plastid
protein-coding regions (Wolfe, 1991). It is approximately 1550
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base pairs (bp) long and encodes a maturase involved in splic-
ing type II introns from RNA transcripts (Wolfe et al., 1992).
Recent studies have shown the usefulness of this gene for re-
solving intergeneric or interspecific relationships among flow-
ering plants, e.g., Malpighiaceae (Cameron et al., 2001), Po-
aceae (Liang and Hilu, 1996), Cornaceae (Xiang et al., 1998),
Nicotiana (Aoki and Ito, 2000; Clarkson et al., in press), Chry-
sosplenium (Soltis et al., 2001), Hypochaeris (Samuel et al.,
2003), Orchidaceae (Goldman et al., 2001; Salazar et al.,
2003) and most recently across all angiosperms (Hilu et al.,
2003).

Low-copy nuclear protein-coding genes remain underuti-
lized in phylogenetic studies, despite the need for nuclear com-
parisons with trees produced from plastid regions (Doyle,
1992, 1997). The nuclear regions most commonly used in phy-
logenetic studies are from high-copy ribosomal loci, such as
ITS (Baldwin et al., 1995). The multigene phytochrome (PHY)
family is a potential source of phylogenetic information. Phy-
tochromes are photoreceptors for red and far-red light in all
land plants (Quail, 1991) and mediate diverse developmental
responses throughout the life cycle of a plant. In angiosperms,
five related sequences coding for phytochrome proteins des-
ignated PHYA-PHYE have been characterized in Arabidopsis
thaliana (Sharrock and Quail, 1989; Clack et al., 1994). A
simple way to sample putatively orthologous loci in the phy-
tochrome gene family is to use locus-specific amplification
primers. Phytochrome sequence data have provided a high de-
gree of resolution within basal angiosperms (Mathews and
Donoghue, 1999), Fabaceae (Mathews et al., 1995), Poaceae–
Andropogoneae (Mathews et al., 2002), Malpighiaceae (Davis
et al., 2002), and Malpighiales (Davis and Chase, 2004) and
may be useful for resolving relationships within Phyllantha-
ceae. The overall rate of evolution of the PHY lineage is about
10 times faster than rbcL (Mathews et al., 1995).
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TABLE 1. Primer sequences used in this study for the amplification and sequencing of the trnK intron and matK gene.

Primer Sequence

trnK 570F 59-TCC AAA ATC AAA AGA GCG ATT GG-39
80F 59-CTA TAC CCA CTT ATC TTT CGG GAG T-39

390F 59-CGA TCT ATT CAT TCA ATA TTT C-39
800F 59-CAT GCA TTA TGT TAG ATA TCA AGG-39

1200F 59-GA (CT) TCT GAT ATT ATC AAC CGA TTT G-39
190R 59-ATT CGA GTA ATT AAA CGT TTT ACA A-39
530R 59-GTT CCA ATT CCA ATA CTC GTG AAG-39
950R 59-AAA AT(AG) ACA TTG ACA TAA ATT GAC AA (AG) G-39

1300R 59-CGA AGT ATA TA (CT) TT (CT) ATT CGA TAC A-39
1710R 59-GCT TGC ATT TTT CAT TGC ACA CG-39

Fig. 1. Location of the matK gene in the trnK intron. Arrowheads indicate
the location and direction of the primers. The trnK 3914F primer is from
Johnson and Soltis (1994); all others are new to this study.

Fig. 2. PHYC (55716–59286) in the fifth chromosome of Arabidopsis
thaliana (Genbank accession number AB005236). Arrowheads (PHYC F and
PHYC R) indicate positions of our primers.

This study analyzes the nuclear gene PHYC and the plastid
gene matK to infer phylogenetic relationships within Phyllan-
thaceae and determine congruence of these two regions. We
aim furthermore to evaluate the phylogenetic patterns obtained
with rbcL sequence data (Wurdack et al., in press) with ad-
ditional genetic markers as the basis for creating a revised
tribal classification of Phyllanthaceae.

MATERIALS AND METHODS

Plant material—Forty-seven species (49 different accessions) from 30 gen-
era (of the 60 genera recognized by Radcliffe-Smith [2001]) for Euphorbi-
aceae-Phyllanthoideae, representing five of 10 tribes, and six of 11 subtribes
of Antidesmeae and Phyllantheae were included in the analyses (see Supple-
mental Data accompanying the online version of this article http://ajbsupp.
botany.org/ßß). The taxon set used in the matK analysis included 41 ingroup
species (43 accessions) and excluded Keayodendron, whereas the analysis of
PHYC included 44 ingroup species (45 accessions) and excluded Uapaca.
Outgroup taxa for these analyses included representatives from several other
families of Malpighiales (APG II, 2003) including: Clusiaceae, Euphorbiaceae
sensu stricto (s.s.), Humiriaceae, Ochnaceae, Picrodendraceae, and Putranji-
vaceae (see Appendix 1 in supplemental data accompanying the online version
of this article http://ajbsupp.botany.org/ßß). Forty-one species (42 accessions)
representing all 30 sampled genera were analyzed in combination. Because
of our focus on Phyllanthaceae, and due to the limited sampling of other
Malpighialean lineages, no close relationship among outgroup families should
be inferred from our results. Most samples were obtained from the DNA Bank
of the Royal Botanic Gardens, Kew, UK (http://www.rbgkew.org.uk/data/
dnaBank/homepage.html). In addition, silica gel dried specimens collected in
Madagascar and Sri Lanka were included.

DNA extraction and amplification—Total DNA was extracted from ma-
terial stored in silica gel following the 2 3 CTAB (cetyltrimethyl ammonium
bromide) procedure of Doyle and Doyle (1987). Most of the DNA samples
obtained from herbarium specimens were purified by cesium chloride/ethi-
dium bromide gradient (1.55 g/mL). Polymerase chain reaction (PCR) am-
plification was carried out using PCR ready mix (AB-0619/LD from Abgene,
Vienna, Austria) and 2–8 ng (1 mL of 2–8 ng/mL) of template total DNA for
a 50 mL reaction mixture. The PCR profile consisted of an initial 2-min pre-
melt at 948C and 35 cycles of 1-min denaturation at 948C, 30-s annealing at

488C, and 1-min extension at 728C followed by a final extension of 10-min
at 728C. Amplified fragments were checked with 1% agarose gel, and the
double-stranded DNA fragments were purified using QIAquick gel purifica-
tion kit (Qiagen, Margaritella, Vienna, Austria).

We designed new amplification primers for matK spanning the entire region
plus part of the trnK intron 59(trnK 570F) and trnK39 (1710R) (Table 1).
Figure 1 shows the positions of the trnK intron in which matK is embedded
and the positions of the primers used in this study. Degraded DNA from
herbarium specimens was amplified in 5 or 6 fragments that were sequenced
separately and then combined into a single contig.

For the PHYC gene, we designed our own primers from the available se-
quences in GenBank. Initially PCR products were cloned by ligation into
pGEM-T Vector Systems (Promega Gmbh, Mannheim, Germany); XL1-Blue
competent cells were transformed according to the manufacturer’s protocol
(Stratagene Europe, Amsterdam, The Netherlands). Resulting colonies were
screened for plasmids with inserts, and five positive clones were amplified
and then sequenced using the same primers. To avoid time-consuming clon-
ing, another set of primers from the aligned cloned sequences of some species
was designed PHYC-F [59-CCAGCTACTGATATACCTCAAGCTTC-39] and
PHYC-R [59-CCAGCTTCCATAAGGCTATCAGTACT-39], which enabled us
to directly sequence a fragment of approximately 600 bp. This fragment is in
the first exon of the PHYC gene starting from 800 bp downstream. The entire
gene is 3571 bp long in Arabidopsis thaliana and has two introns, 136 and
98 bp in length. Primer positions of the sequences used in this study are shown
in Fig. 2.

Sequencing—The purified fragments were directly sequenced on an ABI
377 automated sequencer (Applied Biosystems, ABI, Vienna, Austria) using
dye terminator chemistry following the manufacturer’s protocol. Cycle se-
quencing reactions were performed for each template using each of the two
primers used for PCR amplification and internal primers for matK if required.
Both strands were sequenced. The programs Sequence Navigator and
AutoAssembler (ABI) were used to edit and assemble the complementary
sequences. These sequences have been deposited in GenBank (Appendix 1 in
Supplemental Data that accompanies the online version of this article http://
ajbsupp.botany.org/ßß).

Sequence alignment and phylogenetic analyses—Alignments were ob-
tained using the program Clustal V (Higgins et al., 1992) and improved by
visual refinement. In the matK sequences, large gaps (in multiples of three)
were often needed. Individual and combined parsimony analyses of matK and
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PHYC were performed using PAUP (version 4.0b10; Swofford, 2002). All
heuristic searches were conducted with equal weights, 1000 replicates of ran-
dom sequence addition, tree bisection-reconnection (TBR) branch swapping,
and MulTrees on but permitting 10 trees to be held at each step to enable
more replicates to be performed in less time. Indels were treated as missing
data in our analyses. Confidence limits (BP, bootstrap percentages) for clades
were assessed by performing 1000 replicates of bootstrapping (Felsenstein,
1985) using equal weighting, TBR swapping, MulTrees on, and holding 10
trees per replicate. The individual bootstrap consensus trees were inspected
visually to determine congruence of the two data sets (Whitten et al., 2000).

Model evaluation was done for both matrices independently using Mr
Bayes 2.01 (Huelsenbeck and Ronquist, 2001) to find the best fit. Because
both genes had similar models an independent, model-based estimate was
produced for the combined sequence data using Bayesian inference (Larget
and Simon, 1999) with the method implemented in MrBayes. The general
time reversible model (GTR 1 I 1 G, nst 5 6, rate 5 invgamma) was chosen
for sequence evolution (Rodrı́guez et al., 1990). Four Markov chains starting
with a random tree were run simultaneously for one million generations, sam-
pling trees at every 100th generation. Trees prior to stationarity (3000 trees)
were excluded and the remaining trees used to construct in PAUP* a consen-
sus tree with percentages (Bayesian posterior probabilities [PP]) of trees com-
patible with the single tree. We will not report posterior probabilities here
because these have been demonstrated to be overestimates of confidence (Su-
zuki et al., 2002).

RESULTS

Analysis of the matK gene—The aligned matK matrix con-
sisted of 1612 bp, of which 840 positions were variable, and
602 (37%) were potentially parsimony informative. Heuristic
searches generated three equally parsimonious trees with 1845
steps. One of the equally parsimonious trees with Fitch lengths
(DELTRAN, delayed transformation, optimization) above each
branch and bootstrap percentages (BP . 50) below each
branch is shown in Fig. 3.

Phyllanthaceae are weakly supported (BP 60) as monophy-
letic and are split into two strongly supported (both BP 100)
clades T and F (tanniniferous and fasciculate clade, respec-
tively). The first major clade (T) corresponds to tribes Anti-
desmeae 1 Bischofieae sensu Radcliffe-Smith (2001) and con-
tains four subclades. One strongly supported (BP 100) subcla-
de within clade T includes Aporosa and Baccaurea (Antides-
meae-Scepinae); a second (BP 100) includes Apodiscus
(Antidesmeae-Scepinae) as sister to the members of Antides-
meae-Antidesminae included in this analysis, Antidesma 1
Thecacoris (BP 100); the third and fourth Uapaca (monoge-
neric Antidesmeae-Uapacinae) and Bischofia (monotypic Bis-
chofieae), respectively, are weakly placed relative to one an-
other and to the other two subclades within clade T. Each of
the two representative species of Baccaurea and Thecacoris
are moderately well supported (BP 82 and 87, respectively) as
sister taxa.

The second major clade (F) is split into four well-supported
(BP 100) subclades (F1, F2, F3, F4). The first (F1) comprises
all members of Phyllantheae-Flueggeinae sensu Webster
(1994) included in this analysis. Flueggea is sister to the weak-
ly supported (BP 60) clade containing the remaining members
of clade F1. Margaritaria is then sister to a strongly supported
(BP 100) clade containing all genera with phyllanthoid branch-
ing (Webster, 1956). Phyllanthus is not monophyletic and falls
into two clades each with BP 100. The first contains Phyllan-
thus calycinus (subgenus Isocladus) and P. cf. fuscoluridus 1
P. cf. mantsakariva (both subgenus Kirganelia section Ani-
sonema, supported as sisters with BP 100). In the second,

Phyllanthus nummulariifolius (subgenus Kirganelia section
Pentandra sensu Webster [1967] or subgenus Tenellanthus no-
men invalidum sensu Brunel [1987]) is sister to the well-sup-
ported (BP 99) clade comprising Glochidion plus (Breynia 1
Sauropus). The latter two genera are strongly supported as
sisters with BP 100. The two species of Breynia and Flueggea
were each identified as monophyletic with BP 100 and 94,
respectively.

Subclades F2, F3, and F4 are united in a weakly supported
clade (BP 52). The second subclade (F2) is well supported
(BP 100) and consists of Bridelia, Cleistanthus (both tribe
Bridelieae), Pseudolachnostylis (Phyllantheae-Pseudolachnos-
tylidinae), Gonatogyne, Lachnostylis, and Savia pro parte (all
Wielandieae). Lachnostylis is sister to a clade (BP 100) of the
remaining members of F2, which are split into two subclades;
one with Gonatogyne 1 Savia dictyocarpa (BP 100), and the
other with Bridelia, Cleistanthus and Pseudolachnostylis (BP
99). Cleistanthus is not monophyletic. Cleistanthus oblongi-
folius is more closely related to Bridelia (BP 100) than it is
to Cleistanthus perrieri.

The third strongly supported (BP 100) subclade (F3) in-
cludes Actephila (Wielandieae), Leptopus (Phyllantheae-Lep-
topinae), Meineckia, Zimmermannia, Zimmermanniopsis
(Phyllantheae-Pseudolachnostylidinae), and Poranthera (An-
tidesmeae-Porantherinae). Poranthera is strongly supported
(BP 100) as sister to a well-supported clade (BP 97) clade
constituting the remaining members of clade F3. Within this
clade, Actephila 1 Leptopus form a strongly supported (BP
100) subclade. The two sampled species of Leptopus (both Old
World species) are also supported by BP 100. The other sub-
clade (BP 100) contains Meineckia 1 Zimmermannia 1 Zim-
mermanniopsis, with Meineckia sister to the other two taxa
(BP 86). Heywoodia (Wielandieae) is weakly supported (BP
52) as sister to subclade F3.

The fourth well-supported subclade (F4; BP 100) includes
all lineages of the western Indian Ocean Wielandieae. Wielan-
dia is weakly supported as sister to all other species in this
subclade (BP 57).

Analysis of the PHYC gene—The aligned PHYC matrix
consisted of 601bp of which 485 were variable and 391 (65%)
were potentially parsimony informative. Heuristic searches on
this data set resulted in 1816 equally most parsimonious trees
with 1861 steps. One of the equally parsimonious trees with
Fitch lengths (DELTRAN optimization) above each branch
and bootstrap percentages (BP . 50) below each branch is
shown in Fig. 4.

The monophyly of Phyllanthaceae is weakly supported (BP
, 50), and the two major clades, T and F, found in matK were
recovered with weak support (BP 67 and 54, respectively; see
Fig. 4). The composition of clades T and F1–F4 is identical
to those uncovered using matK (with the omission of Uapaca
from clade T, and the addition of Keayodendron to clade F2
due to sampling differences). The topology of subclade T was
identical between PHYC and matK for all similarly sampled
taxa, but there are some differences in the placement of indi-
vidual taxa in subclades F1–F4.

Clade F1 is moderately supported (BP 82). In contrast to
the matK analysis, Margaritaria is sister to the remaining
members of clade F1. Flueggea is monophyletic (BP 100), and
is well-supported (BP 90) as sister to the clade (BP 94) char-
acterized by phyllanthoid branching (Webster, 1956). Phyllan-
thus is not monophyletic; species of Phyllanthus occur in at
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Fig. 3. One of the three most parsimonious trees obtained from the maximum parsimony analysis of the matK gene (length 5 1845, CI 5 0.63, RI 5 0.82).
Branch lengths (DELTRAN optimization) and bootstrap percentages (.50) are indicated above and below the branches, respectively. Arrowheads indicate nodes
not present in the strict consensus tree. Hyphens (-) indicate BP , 50.
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Fig. 4. One of the most parsimonious trees obtained from the maximum parsimony analysis of the PHYC (length 5 1861 steps, CI 5 0.45, RI 5 0.65).
Branch lengths (DELTRAN optimization) and bootstrap percentages (.50) are indicated above and below the branches, respectively. Arrowheads indicate nodes
not present in the strict consensus tree. Hyphens (-) indicate BP , 50.
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least two clades. The first (BP 88) includes P. calycinus (sub-
genus Isocladus), plus a well-supported (BP 99) clade con-
sisting of three taxa of subgenus Kirganelia section Anisone-
ma. The second clade (BP 96) is a polytomy comprised of
several species of Phyllanthus [P. lokohensis (subgenus Phyl-
lanthus), plus two accessions of P. nummulariifolius (Kirga-
nelia-Pentandra or Tenellanthus) and P. epiphyllanthus (sub-
genus Xylophylla)], plus the well-supported (BP100) clade
Glochidion (Breynia 1 Sauropus). Within the last subclade,
Sauropus 1 Breynia are weakly supported as sisters (BP 54),
and support for the two species of Breynia is moderate (BP
87).

Bridelia and Cleistanthus (both Bridelieae), Keayodendron
and Pseudolachnostylis (both Phyllantheae-Pseudolachnostyl-
idinae), Gonatogyne, Savia and Lachnostylis (all Wielandieae)
form a strongly supported (BP 100) clade F2. As with matK,
Gonatogyne 1 Savia on the one hand, and Bridelia, Cleistan-
thus and Pseudolachnostylis on the other hand form well-sup-
ported (BP 80 and 83) clades. Cleistanthus appears non mono-
phyletic as in matK. Cleistanthus oblongifolius clusters with
Bridelia again (BP 97), but C. perrieri forms a well-supported
(BP 97) clade with Pseudolachnostylis. Keayodendron, which
was not sampled in the matK analysis, is weakly supported as
sister to all other members of clade F2.

Clade F3 is weakly supported (BP 76) and consists of two
sister clades: one containing Actephila and Leptopus, and the
other Poranthera and Meineckia (Zimmermannia 1 Zimmer-
manniopsis). Each of these clades is supported with BP , 50.
The two species of Leptopus are united by BP 100. Meineckia
(Zimmermannia 1 Zimmermanniopsis) is supported by BP
100, and the sister-group relationship of Zimmermannia and
Zimmermanniopsis has weak support (BP 56). The position of
Heywoodia is weakly supported as sister to F3, a placement
identical to that inferred from matK.

The western Indian Ocean Wielandieae again group in the
highly supported (BP 100) clade F4. No further bootstrap sup-
ported resolution is obtained with PHYC in this clade.

Parsimony and Bayesian analysis of combined data—
Since the consensus trees obtained with the individual gene
matrices were topologically congruent, the two data sets were
combined for further analysis. The aligned combined matK
and PHYC matrix consisted of 2277bp. The heuristic search
on this data set resulted in six equally most parsimonious trees
with 3440 steps (Fig. 5). Bayesian analyses of the combined
matrix produced a tree (not shown) that is nearly identical to
the parsimony tree. All clades with high posterior probabilities
(PP 1.0) are also present and receive at least moderate boot-
strap support in the parsimony analysis.

The most notable result of this combined parsimony anal-
ysis is the high support (BP 100) for Phyllanthaceae. The two
major clades (T and F) are well-supported (both with BP 100).
The topology of clade T is identical with that in the matK tree,
with similarly high bootstrap percentages. Clades F1–F4 are
all well supported (BP 100) and resolved into F1, F2, and (F4
(Heywoodia 1 F3)).

Clade F1 is strongly supported (BP 100). The positions of
Flueggea and Margaritaria equal those in the PHYC analysis.
The topology of all other nodes agrees with both single-gene
analyses, but bootstrap percentages vary slightly.

Clade F2 is well-supported in the combined analysis (BP
100). The topology of the strict consensus tree is identical to
that of the PHYC analysis, having low support for internal

nodes. Clade F3 shows an identical topology and similarly
high bootstrap percentages in the combined and matK analy-
ses. Placement of Heywoodia as sister of the F3 clade is mod-
erately supported (BP 86), compared to the weak support in
the single-region analyses. Clade F4 is supported by BP 100
in all three analyses, but support for internal nodes does not
increase in the combined analysis as in clade F2.

DISCUSSION

matK and PHYC—The utility of matK for resolving generic
or species level relationships is similar or greater than that of
nuclear rDNA ITS (Soltis et al., 1996). Indels are likely to be
present in a matK data matrix of any taxonomic breadth. In
our analysis matK resolves clades well at the tribal and generic
levels and provides high bootstrap percentages for the different
clades (Fig. 3). Although there was a greater percentage of
potentially informative sites in PHYC (65%) than in matK
(37%), the latter gene provided higher bootstrap percentages
for the major clades and appears to be of greater phylogenetic
utility.

Comparison with rbcL—For ease of reference, the clades
recovered in this study are named in concordance with the
rbcL analysis of Wurdack et al. (in press). Sampling for the
rbcL study (Wurdack et al., in press) was more comprehensive
than in this study. All genera included here were also included
in the rbcL study, with the exception of Keayodendron (clade
F2) and Zimmermanniopsis (clade F3). This study is also the
first to include representatives of Phyllanthus subgenus Kir-
ganelia section Anisonema (clade F1). The topologies of the
combined matK/PHYC (presented here) and rbcL trees are
consistent with one another. Major clades of Phyllanthaceae
(T, F1–F4) recovered with rbcL were also found with matK
and PHYC. A single inconsistency in the topologies of the
three genes is the placement of Cleistanthus perrieri (clade
F2). The position of this species in the rbcL tree is identical
to that in the matK tree (sister to Pseudolachnostylis (Bridelia
1 Cleistanthus oblongifolius)) but differs from the PHYC tree
and the combined matK/PHYC tree (sister to Pseudolachnos-
tylis only). It is possible that there is conflicting signal for the
position of Pseudolachnostylis. Paraphyly of Cleistanthus was
already reported and discussed in Wurdack et al. (in press).

The combined matK/PHYC tree shows higher support for
individual clades and better resolution than that obtained from
rbcL. It should be noted that outgroup sampling in these stud-
ies is not identical and may affect support for the Phyllantha-
ceae node. Most prominently, monophyly of Phyllanthaceae is
supported with BP 100 (rather than just BP 73 with rbcL). The
two major clades (T and F) have slightly improved support
(BP 100 for both vs. BP 98 and 91 in rbcL). Support for the
subclades F1–F4 has increased from BP 95–100 to BP 100 for
all four clades in the combined analysis.

Monophyly of Thecacoris is confirmed in the matK and
combined analysis with moderate support (BP 87 and 86, re-
spectively). The sampled species represent the two major
groups, Thecacoris s.s. and Cyathogyne, recognized at generic
rank by some authors (e.g., Pax and Hoffmann, 1922; Léonard,
1995). Their relationship received BP , 50 in the rbcL anal-
ysis.

Two more instances of improved resolution are noted here
with the caveat that sampling in the rbcL analysis was more
comprehensive in these clades: Antidesma 1 Thecacoris are
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Fig. 5. One of the six most parsimonious trees of the combined analysis of matK and PHYC (length 5 3440, CI 5 0.59, RI 5 0.75). Branch lengths
(DELTRAN optimization) and bootstrap percentages (.50) are indicated above and below the branches, respectively. Arrowheads indicate nodes not present
in the strict consensus tree. Hyphens (-) indicate BP , 50.
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strongly supported sister taxa with Apodiscus sister to both,
whereas with rbcL no further resolution was obtained for these
three taxa. Antidesma and Thecacoris closely resemble each
other, and the genera lack distinguishing generic characters in
staminate specimens (both are dioecious). In pistillate speci-
mens, the unilocular drupes of Antidesma are clearly different
from the trilocular schizocarps of Thecacoris. In the matK and
combined analyses, Leptopus and Actephila are grouped to-
gether (BP 98), which is biogeographically plausible (both are
distributed in Asia and Australia) even though it contradicts
wood anatomical (Mennega, 1987) and embryological (Web-
ster, 1994) arguments used to distance Actephila (previously
in Wielandieae) from Leptopus (Phyllantheae-Leptopinae).

Drypetes madagascariensis—The high genetic divergence
of the two accessions of Drypetes madagascariensis (Putran-
jivaceae, outgroup for this study) may indicate heterogeneity
of the species in its present circumscription. Most species of
the dioecious genus Drypetes have few distinguishing mor-
phological characters, and D. madagascariensis is noted for
its remarkable variability (McPherson, 2000). The accession
here marked as D. cf. madagascariensis differs from the ma-
jority of specimens solely by the lack or poor development of
the fifth sepal but agrees in all other macro-morphological
characters (the specimen is in fruit) with D. madagascariensis.

Position of Zimmermanniopsis—Zimmermanniopsis
uzungwaensis has been variously accepted at generic rank
(Radcliffe-Smith and Harley, 1990; Webster, 1994; Radcliffe-
Smith, 2001) or included in Meineckia as section Zimmer-
manniopsis (Radcliffe-Smith, 1997; Govaerts et al., 2000).
Placement in all analyses presented here confirms the close
relationship of Zimmermanniopsis to Zimmermannia, and to
Meineckia but more sampling is needed to determine the status
of these taxa. A more comprehensive study of subclade F3 is
presently underway at the Royal Botanic Gardens, Kew. One
objective of this study is to clarify the taxonomy of the Mei-
neckia/Zimmermannia/Zimmermanniopsis-complex.

Placement of Keayodendron—The monotypic genus Keay-
odendron has not previously been included in molecular phy-
logenetic analyses. Initially described as a species of Casearia
(formerly Flacourtiaceae; Salicaceae-Samydeae in Chase et al.,
2002), Leandri (1959) transferred it correctly to Euphorbi-
aceae-Phyllanthoideae and described the new genus Keayod-
endron. He positioned it near Drypetes (now Putranjivaceae)
because of the general resemblance of leaves and inflores-
cences, but also pointed out similarities to Bridelia in floral
and embryo morphology, most strikingly the extrastaminal sta-
minate disc in Bridelia and Keayodendron (vs. a central sta-
minate disc in Drypetes). He furthermore compared his new
genus to Pseudolachnostylis and Securinega. The resemblance
between Keayodendron and Bridelia had already been noted
in the basionym Casearia bridelioides Gilg ex Engl. However,
emphasis placed on the valvate sepals in tribe Bridelieae pre-
viously obscured the close relationship of those taxa. Webster
(1994: 41–42) placed Keayodendron in Phyllantheae-Pseudo-
lachnostylidinae ‘‘for lack of a better alternative,’’ stating that
‘‘. . . it is quite possible that Pseudolachnostylis and Keay-
odendron may not be closely related to the rest of the genera.’’
He compared its fruits and aspect to Bridelia, but the lack of
petals and the imbricate sepals in Keayodendron deterred him

from formally associating it with Bridelieae. Radcliffe-Smith
(2001) followed Webster’s lead.

The molecular data place both Keayodendron and Pseudo-
lachnostylis with Bridelia and Cleistanthus (Wurdack et al., in
press, for Pseudolachnostylis only; this study). Stuppy (1996)
came to the same conclusion and united these four genera in
his Bridelia group according to their seed coat anatomy. Bri-
delia, Cleistanthus, and Keayodendron share a double disc in
pistillate flowers (Radcliffe-Smith, 2001). This double disc is
also described and illustrated in Pseudolachnostylis (Pax and
Hoffmann, 1922, and P. Hoffmann’s own observations). It is
a potential synapomorphy of this subclade because it is not
present in Gonatogyne and Savia (P. Hoffmann, unpublished
data). The position of Keayodendron within clade F2 is at
present unclear.

Phyllanthus subgenus Kirganelia is not monophyletic—
Phyllanthus subgenus Kirganelia was proposed by Webster
(1956) based on Kirganelia A. Juss. to accommodate species
with phyllanthoid branching, five stamens, colporate pollen
grains, and 3–10 carpels. He considered this variable subgenus
to be primitive, comprising P. sections Anisonema and Flori-
bundi. The latter section includes P. nummulariifolius and P.
tenellus (Webster, 1957). Webster (1967) later described the
new P. section Pentandra in subgenus Kirganelia to accom-
modate P. nummulariifolius and P. tenellus along with the
type, P. pentandrus. He stated (Webster, 1967: 334) that ‘‘. . .
this section is significant phylogenetically because most of its
taxa have precisely the habit and appearance of species of
subg. Phyllanthus, from which they scarcely differ in anything
more than the five-merous rather than three-merous androe-
cium. Since P. tenellus is the only herbaceous diploid species
with phyllanthoid branching, it and closely related taxa such
as P. capillipes Schum. [5 P. nummulariifolius] may be re-
garded as the nearest living equivalents of the taxa ancestral
to subg. Phyllanthus.’’ Both of Webster’s studies focused on
the Americas and dealt with few species of this predominantly
Old World group.

Brunel (1975, 1987) studied the genus Phyllanthus exten-
sively in continental Africa. He remarked on the heterogeneity
of subgenus Kirganelia and proposed to segregate the species
related to Phyllanthus tenellus Roxb. in a new subgenus Te-
nellanthus (Brunel, 1987) which was never validly published.

Our study included for the first time species of both P. sub-
genus Kirganelia section Anisonema, as well as P. subgenus
Kirganelia section Pentandra (P. subgenus Tenellanthus sec-
tion Tenellanthus, nomen invalidum; Brunel, 1987). The three
sampled taxa of section Anisonema belong to a morphologi-
cally homogeneous group with a center of diversity in Mad-
agascar. All closely resemble P. casticum, and characters of
the constituent taxa overlap. Species identification is provi-
sional pending a taxonomic revision (M. Ralimanana and P.
Hoffmann, unpublished data).

Placement of these taxa in our analyses corroborates Bru-
nel’s (1975, 1987) view that subgenus Kirganelia is hetero-
geneous, as well as Webster’s (1967) comparison of his P.
section Pentandra with subgenus Phyllanthus. Phyllanthus
nummulariifolius is found in a subclade with Breynia, Glo-
chidion, and Sauropus, which in the PHYC analysis also con-
tains Phyllanthus epiphyllanthus (subgenus Xylophylla) and P.
lokohensis (subgenus Phyllanthus). Two accessions of P. num-
mulariifolius were sequenced to confirm this placement. The
three accessions of subgenus Kirganelia section Anisonema



140 [Vol. 92AMERICAN JOURNAL OF BOTANY

(P. cf. decipiens, P. cf. fuscoluridus and P. cf. mantsakariva)
form a monophyletic group as predicted by their similar mor-
phology. This clade is sister to Phyllanthus calycinus of sub-
genus Isocladus in this study with limited sampling in the
largest genus of Phyllanthaceae (c. 800 species).

Western Indian Ocean Wielandieae—The centre of diver-
sity for the taxa united here in clade F4 is Madagascar, with
few species also represented in the Seychelles, the Comoro
Islands, and the East coast of Kenya. They are morphologi-
cally similar despite being currently placed in the four differ-
ent genera Blotia, Petalodiscus, Savia and Wielandia. The type
of Savia is from Hispaniola and belongs in clade F2 as sister
to S. dictyocarpa sampled here (Wurdack et al., in press). This
shows the degree of taxonomic confusion surrounding this
poorly known group. The lack of support for the internal nodes
in this clade indicates that generic boundaries are in need of
revision. The entire clade is revised in a forthcoming publi-
cation (Hoffmann and McPherson, in press).

Conclusions—Results of DNA sequence analyses using
matK and PHYC correspond well with each other and with
those separately obtained from analysis of rbcL (Wurdack et
al., in press). Inclusion of missing genera and sampling of
more taxa in problematic genera, namely Cleistanthus and
Phyllanthus, as well as increasing the number of plastid mark-
ers analyzed and sequencing a longer fragment of low-copy
nuclear PHYC may refine the phylogenetic hypothesis pre-
sented here.

Note added in proof: The high level of sequence divergence
observed in the two accessions of Drypetes madagascariensis
(outgroup taxa) may possibly be due the amplification of dif-
ferent PHY paralog, PHYE (in one of the accessions), instead
of PHYC, which is otherwise used in our analyses.
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