33 research outputs found

    Evaluating the potential of innovations across aquaculture product value chains for poverty alleviation in Bangladesh and India

    Get PDF
    Evidence is presented that innovation across aquaculture value chains can contribute to poverty reduction through income generation and increased consumption of nutritious aquatic foods. Innovation is defined and contextualized in relation to aquaculture development. Opportunities for aquaculture innovation across value chains for poverty reduction and sustainable production are described. Contemporary trends in aquaculture development in Bangladesh and India, with a focus on 2011-2020, are reviewed, as understanding transformative change to aquatic food systems during this period could benefit millions of poor and marginal consumers. Market-led commercial production, instigated by private sector entrepreneurs for domestic markets, has underpinned the surge in freshwater fish culture in key geographical locations. In contrast booms in shrimp production have been associated with export opportunities and related cycles of boom-and-bust have been described, with busts attributed to falling market prices and disease outbreaks. Innovation could safeguard supplies of affordable fish to poorer groups (especially young children and pregnant and breastfeeding women) and enable better health management of aquatic animals including coordination of surveillance and disease control measures. Innovation to effectively promote better management practices and integrated services provision to large numbers of small- and medium-scale producers could contribute to poverty reduction. Opportunities for future innovation to ensure that aquaculture development is sustainable are critically reviewed. Innovative strategies to add value to byproducts and utilize waste resources could avoid negative environmental impacts, recycle nutrients and create income generating opportunities. A new paradigm for development assistance that identifies and supports promising innovation trajectories across jurisdictions, product value chains, institutional regimes and food systems is needed. Government agencies must be responsive to the needs of businesses throughout aquatic food systems and devise policies and regulatory regimes that support transformative and sustained growth of the aquaculture sector. Investment in capacity-building, education, research and training and action to promote an enabling institutional environment must be regarded as essential elements to maximize and share equitably the benefits arising and avoid potential negative impacts of inappropriate innovations

    The Beetle Tree of Life Reveals that Coleoptera Survived End-Permium Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution

    Get PDF
    Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single-copy nuclear protein-coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum-likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end-Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family-level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species-rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species-poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates – especially plants, but also including fungi, wood and leaf litter – but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well-resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life

    The Beetle Tree of Life  Reveals the Order Coleoptera Survived End Permain Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution

    Get PDF
    Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single-copy nuclear protein-coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum-likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end-Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family-level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species-rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species-poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates - especially plants, but also including fungi, wood and leaf litter - but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well-resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life.Facultad de Ciencias Naturales y Muse

    The role of ocelli in cockroach optomotor performance

    Get PDF
    Insect ocelli are relatively simple eyes that have been assigned various functions not related to pictorial vision. In some species they function as sensors of ambient light intensity, from which information is relayed to various parts of the nervous system, e.g., for the control of circadian rhythms. In this work we have investigated the possibility that the ocellar light stimulation changes the properties of the optomotor performance of the cockroach Periplaneta americana. We used a virtual reality environment where a panoramic moving image is presented to the cockroach while its movements are recorded with a trackball. Previously we have shown that the optomotor reaction of the cockroach persists down to the intensity of moonless night sky, equivalent to less than 0.1 photons/s being absorbed by each compound eye photoreceptor. By occluding the compound eyes, the ocelli, or both, we show that the ocellar stimulation can change the intensity dependence of the optomotor reaction, indicating involvement of the ocellar visual system in the information processing of movement. We also measured the cuticular transmission, which, although relatively large, is unlikely to contribute profoundly to ocellar function, but may be significant in determining the mean activity level of completely blinded cockroaches

    Conservation status of the American horseshoe crab, (Limulus polyphemus): a regional assessment

    Get PDF
    corecore