152 research outputs found

    X-Ray Emission from Rotating Elliptical Galaxies

    Full text link
    The slow inward flow of the hot gas in elliptical galaxy cooling flows is nearly impossible to detect directly due to instrumental limitations. However, in rotating galaxies, if the inflowing gas conserves angular momentum, it will eventually form a disk. The X-ray signature of this phenomenon is a flattening of the X-ray isophotes in the inner 1-10 kpc region. This effect is observable, so we have searched for it in X-ray observations of six rotating and non-rotating early-type galaxies, obtained mainly with the ROSAT PSPC and HRI imagers. The ellipticities of the X-ray emission never increase toward the central region, nor are the X-ray ellipticities significantly greater than the ellipticities for the optical stellar emission. Central ellipticities in excess of 0.5 were expected in rotating ellipticals whereas values of 0-0.2 are measured. The failure to detect the expected signature requires a modification to the standard cooling flow picture, possibly including partial galactic winds, rapid mass drop-out, or turbulent redistribution of angular momentum.Comment: 34 postscript pages; ApJ, in press (Feb 10,2000

    Reducing the Salt Added to Takeaway Food: Within-Subjects Comparison of Salt Delivered by Five and 17 Holed Salt Shakers in Controlled Conditions

    Get PDF
    Objectives To determine if the amount of salt delivered by standard salt shakers commonly used in English independent takeaways varies between those with five and 17 holes; and to determine if any differences are robust to variations in: the amount of salt in the shaker, the length of time spent shaking, and the person serving. Design Four laboratory experiments comparing the amount of salt delivered by shakers. Independent variables considered were: type of shaker used (five or 17 holes), amount of salt in the shaker before shaking commences (shaker full, half full or nearly empty), time spent shaking (3s, 5s or 10s), and individual serving. Setting Controlled, laboratory, conditions. Participants A quota-based convenience sample of 10 participants (five women) aged 18–59 years. Main Outcome Measures Amount of salt delivered by salt shakers. Results Across all trials, the 17 holed shaker delivered a mean (SD) of 7.86g (4.54) per trial, whilst the five holed shaker delivered 2.65g (1.22). The five holed shaker delivered a mean of 33.7% of the salt of the 17 holed shaker. There was a significant difference in salt delivered between the five and 17 holed salt shakers when time spent shaking, amount of salt in the shaker and participant were all kept constant (p<0.001). This difference was robust to variations in the starting weight of shakers, time spent shaking and participant shaking (p

    Comparison of sodium content of meals served by independent takeaways using standard versus reduced holed salt shakers: cross-sectional study

    Get PDF
    Background Takeaway food has a relatively poor nutritional profile. Providing takeaway outlets with reduced-holed salt shakers is one method thought to reduce salt use in takeaways, but effects have not been formally tested. We aimed to determine if there was a difference in sodium content of standard fish and chip meals served by Fish & Chip Shops that use standard (17 holes) versus reduced-holed (5 holes) salt shakers, taking advantage of natural variations in salt shakers used. Methods We conducted a cross-sectional study of all Fish & Chip Shops in two local government areas (n = 65), where servers added salt to meals as standard practice, and salt shaker used could be identified (n = 61). Standard fish and chip meals were purchased from each shop by incognito researchers and the purchase price and type of salt shaker used noted. Sodium content of full meals and their component parts (fish, chips, and fish batter) was determined using flame photometry. Differences in absolute and relative sodium content of meals and component parts between shops using reduced-holed versus standard salt-shakers were compared using linear regression before and after adjustment for purchase price and area. Results Reduced-holed salt shakers were used in 29 of 61 (47.5 %) included shops. There was no difference in absolute sodium content of meals purchased from shops using standard versus reduced-holed shakers (mean = 1147 mg [equivalent to 2.9 g salt]; SD = 424 mg; p > 0.05). Relative sodium content was significantly lower in meals from shops using reduced-holed (mean = 142.5 mg/100 g [equivalent to 0.4 g salt/100 g]; SD = 39.0 mg/100 g) versus standard shakers (mean = 182.0 mg/100 g; [equivalent to 0.5 g salt/100 g]; SD = 68.3 mg/100 g; p = 0.008). This was driven by differences in the sodium content of chips and was extinguished by adjustment for purchase price and area. Price was inversely associated with relative sodium content (p < 0.05). Conclusions Using reduced-holed salt shakers in Fish & Chip Shops is associated with lower relative sodium content of fish and chip meals. This is driven by differences in sodium content of chips, making our results relevant to the wide range of takeaways serving chips. Shops serving higher priced meals, which may reflect a more affluent customer base, may be more likely to use reduced-holed shakers

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    A study of the radiation tolerance of cvd diamond to 70 mev protons, fast neutrons and 200 mev pions

    Get PDF
    We measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 μm pitch strip detector fabricated on each diamond sample before and after irradiation. We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV), and a third group of samples with 200 MeV pions, in steps, to (8.8±0.9) × 1015^{15} protons/cm2^{2}, (1.43±0.14) × 1016^{16} neutrons/cm2^{2}, and (6.5±1.4) × 1014 pions/cm2^{2}, respectively. By observing the charge induced due to the separation of electron–hole pairs created by the passage of the hadron beam through each sample, on an event-by-event basis, as a function of irradiation fluence, we conclude all datasets can be described by a first-order damage equation and independently calculate the damage constant for 70 MeV protons, fast reactor neutrons, and 200 MeV pions. We find the damage constant for diamond irradiated with 70 MeV protons to be 1.62±0.07(stat)±0.16(syst)× 10−18 cm2^{2}/(pμm), the damage constant for diamond irradiated with fast reactor neutrons to be 2.65±0.13(stat)±0.18(syst)× 10−18 cm2^{2}/(nμm), and the damage constant for diamond irradiated with 200 MeV pions to be 2.0±0.2(stat)±0.5(syst)× 10−18 cm2^{2}/(πμm). The damage constants from this measurement were analyzed together with our previously published 24 GeV proton irradiation and 800 MeV proton irradiation damage constant data to derive the first comprehensive set of relative damage constants for Chemical Vapor Deposition diamond. We find 70 MeV protons are 2.60 ± 0.29 times more damaging than 24 GeV protons, fast reactor neutrons are 4.3 ± 0.4 times more damaging than 24 GeV protons, and 200 MeV pions are 3.2 ± 0.8 more damaging than 24 GeV protons. We also observe the measured data can be described by a universal damage curve for all proton, neutron, and pion irradiations we performed of Chemical Vapor Deposition diamond. Finally, we confirm the spatial uniformity of the collected charge increases with fluence for polycrystalline Chemical Vapor Deposition diamond, and this effect can also be described by a universal curve

    Beam test results of 3D pixel detectors constructed with poly-crystalline CVD diamond

    Get PDF
    As a possible candidate for extremely radiation tolerant tracking devices we present a novel detector design - namely 3D detectors - based on poly-crystalline CVD diamond sensors with a pixel readout. The fabrication of recent 3D detectors as well their results in recent beam tests are presented. We measured the hit efficiency and signal response of two 3D diamond detectors with 50 × 50 μm cell sizes using pixel readout chip technologies currently used at CMS and ATLAS. In all runs, both devices attained efficiencies >98 % in a normal incident test beam of minimum ionising particles. The highest efficiency observed during the beam tests was 99.2 %
    corecore