82 research outputs found

    Pedigree analysis of 220 almond genotypes reveals two world mainstream breeding lines based on only three different cultivars

    Get PDF
    Loss of genetic variability is an increasing challenge in tree breeding programs due to the repeated use of a reduced number of founder genotypes. However, in almond, little is known about the genetic variability in current breeding stocks, although several cases of inbreeding depression have been reported. To gain insights into the genetic structure in modern breeding programs worldwide, marker-verified pedigree data of 220 almond cultivars and breeding selections were analyzed. Inbreeding coefficients, pairwise relatedness, and genetic contribution were calculated for these genotypes. The results reveal two mainstream breeding lines based on three cultivars: “Tuono”, “Cristomorto”, and “Nonpareil”. Descendants from “Tuono” or “Cristomorto” number 76 (sharing 34 descendants), while “Nonpareil” has 71 descendants. The mean inbreeding coefficient of the analyzed genotypes was 0.041, with 14 genotypes presenting a high inbreeding coefficient, over 0.250. Breeding programs from France, the USA, and Spain showed inbreeding coefficients of 0.075, 0.070, and 0.037, respectively. According to their genetic contribution, modern cultivars from Israel, France, the USA, Spain, and Australia trace back to a maximum of six main founding genotypes. Among the group of 65 genotypes carrying the Sf allele for self-compatibility, the mean relatedness coefficient was 0.125, with “Tuono” as the main founding genotype (24.7% of total genetic contribution). The results broaden our understanding about the tendencies followed in almond breeding over the last 50 years and will have a large impact into breeding decision-making process worldwide. Increasing current genetic variability is required in almond breeding programs to assure genetic gain and continuing breeding progress

    Genome-wide SNP identification by high-throughput sequencing and selective mapping allows sequence assembly positioning using a framework genetic linkage map

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determining the position and order of contigs and scaffolds from a genome assembly within an organism's genome remains a technical challenge in a majority of sequencing projects. In order to exploit contemporary technologies for DNA sequencing, we developed a strategy for whole genome single nucleotide polymorphism sequencing allowing the positioning of sequence contigs onto a linkage map using the bin mapping method.</p> <p>Results</p> <p>The strategy was tested on a draft genome of the fungal pathogen <it>Venturia inaequalis</it>, the causal agent of apple scab, and further validated using sequence contigs derived from the diploid plant genome <it>Fragaria vesca</it>. Using our novel method we were able to anchor 70% and 92% of sequences assemblies for <it>V. inaequalis </it>and <it>F. vesca</it>, respectively, to genetic linkage maps.</p> <p>Conclusions</p> <p>We demonstrated the utility of this approach by accurately determining the bin map positions of the majority of the large sequence contigs from each genome sequence and validated our method by mapping single sequence repeat markers derived from sequence contigs on a full mapping population.</p

    Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm

    Get PDF
    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs.The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species

    Computational Detection and Functional Analysis of Human Tissue-Specific A-to-I RNA Editing

    Get PDF
    A-to-I RNA editing is a widespread post-transcriptional modification event in vertebrates. It could increase transcriptome and proteome diversity through recoding the genomic information and cross-linking other regulatory events, such as those mediated by alternative splicing, RNAi and microRNA (miRNA). Previous studies indicated that RNA editing can occur in a tissue-specific manner in response to the requirements of the local environment. We set out to systematically detect tissue-specific A-to-I RNA editing sites in 43 human tissues using bioinformatics approaches based on the Fisher's exact test and the Benjamini & Hochberg false discovery rate (FDR) multiple testing correction. Twenty-three sites in total were identified to be tissue-specific. One of them resulted in an altered amino acid residue which may prevent the phosphorylation of PARP-10 and affect its activity. Eight and two tissue-specific A-to-I RNA editing sites were predicted to destroy putative exonic splicing enhancers (ESEs) and exonic splicing silencers (ESSs), respectively. Brain-specific and ovary-specific A-to-I RNA editing sites were further verified by comparing the cDNA sequences with their corresponding genomic templates in multiple cell lines from brain, colon, breast, bone marrow, lymph, liver, ovary and kidney tissue. Our findings help to elucidate the role of A-to-I RNA editing in the regulation of tissue-specific development and function, and the approach utilized here can be broadened to study other types of tissue-specific substitution editing

    Selection of a core set of RILs from Forrest × Williams 82 to develop a framework map in soybean

    Get PDF
    Soybean BAC-based physical maps provide a useful platform for gene and QTL map-based cloning, EST mapping, marker development, genome sequencing, and comparative genomic research. Soybean physical maps for “Forrest” and “Williams 82” representing the southern and northern US soybean germplasm base, respectively, have been constructed with different fingerprinting methods. These physical maps are complementary for coverage of gaps on the 20 soybean linkage groups. More than 5,000 genetic markers have been anchored onto the Williams 82 physical map, but only a limited number of markers have been anchored to the Forrest physical map. A mapping population of Forrest × Williams 82 made up of 1,025 F8 recombinant inbred lines (RILs) was used to construct a reference genetic map. A framework map with almost 1,000 genetic markers was constructed using a core set of these RILs. The core set of the population was evaluated with the theoretical population using equality, symmetry and representativeness tests. A high-resolution genetic map will allow integration and utilization of the physical maps to target QTL regions of interest, and to place a larger number of markers into a map in a more efficient way using a core set of RILs

    A framework physical map for peach, a model Rosaceae species

    Get PDF
    A genome-wide framework physical map of peach was constructed using high-information content fingerprinting (HICF) and FPC software. The resulting HICF assembly contained 2,138 contigs composed of 15,655 clones (4.3× peach genome equivalents) from two complementary bacterial artificial chromosome libraries. The total physical length of all contigs is estimated at 303 Mb or 104.5% of the peach genome. The framework physical map is anchored on the Prunus genetic reference map and integrated with the peach transcriptome map. The physical length of anchored contigs is estimated at 45.0 Mb or 15.5% of the genome. Altogether, 2,636 markers, i.e., genetic markers, peach unigene expressed sequence tags, and gene-specific and overgo probes, were incorporated into the physical framework and supported the accuracy of contig assembly.This project was supported by the United States Department of Agriculture NRI Award # 2005-35300-15452.Peer reviewe

    A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of <it>Eucalyptus </it>using Single Feature Polymorphism (SFP) markers.</p> <p>Results</p> <p>SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. <it>In silico </it>validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the <it>Eucalyptus grandis </it>genome.</p> <p>Conclusions</p> <p>The <it>Eucalyptus </it>1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on <it>Eucalyptus </it>maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species.</p

    Construction of an almond linkage map in an Australian population Nonpareil × Lauranne

    Get PDF
    Background: Despite a high genetic similarity to peach, almonds (Prunus dulcis) have a fleshless fruit and edible kernel, produced as a crop for human consumption. While the release of peach genome v1.0 provides an excellent opportunity for almond genetic and genomic studies, well-assessed segregating populations and the respective saturated genetic linkage maps lay the foundation for such studies to be completed in almond. Results: Using an almond intraspecific cross between ‘Nonpareil’ and ‘Lauranne’ (N × L), we constructed a moderately saturated map with SSRs, SNPs, ISSRs and RAPDs. The N × L map covered 591.4 cM of the genome with 157 loci. The average marker distance of the map was 4.0 cM. The map displayed high synteny and colinearity with the Prunus T × E reference map in all eight linkage groups (G1-G8). The positions of 14 mapped gene-anchored SNPs corresponded approximately with the positions of homologous sequences in the peach genome v1.0. Analysis of Mendelian segregation ratios showed that 17.9% of markers had significantly skewed genotype ratios at the level of P < 0.05. Due to the large number of skewed markers in the linkage group 7, the potential existence of deleterious gene(s) was assessed in the group. Integrated maps produced by two different mapping methods using JoinMap® 3 were compared, and their high degree of similarity was evident despite the positional inconsistency of a few markers. Conclusions: We presented a moderately saturated Australian almond map, which is highly syntenic and collinear with the Prunus reference map and peach genome V1.0. Therefore, the well-assessed almond population reported here can be used to investigate the traits of interest under Australian growing conditions, and provides more information on the almond genome for the international community.Iraj Tavassolian, Gholmereza Rabiei, Davina Gregory, Mourad Mnejja, Michelle G Wirthensohn, Peter W Hunt, John P Gibson, Christopher M Ford, Margaret Sedgley, and Shu-Biao W

    Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family

    Get PDF
    Abstract Background Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. Results We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. Conclusions A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae.Apple genome research at FEM is supported by the research office of the Provincia autonoma di Trento. DJS and ELG acknowledge a grant from the East Malling Trust. Fragaria genomics at EMR is funded by the BBSRC. JMB is supported by a grant by Plant & Food Research's Excellence Programme. Apple genomics at Plant & Food Research is partially supported by the New Zealand Foundation for Research Science and Technology project C06X0812 "Exploiting Opportunities from Horticultural Genomics". Research conducted at IRTA was partly funded by the CONSOLIDER-INGENIO 2010 Program (CSD2007-00036) and project INIA-RTA2007-00063-00-00, both from the Spanish Ministry of Science and Innovation. RosCOS development at OSU/MSU was funded by the National Research Initiative Competitive Grant 2005-35300-15454 of USDA's National Institute of Food and Agriculture.Peer Reviewe
    corecore