464 research outputs found

    Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response

    Get PDF
    The sensitivity of T cells to interleukin-2 (IL-2) can vary by three orders of magnitude and is determined by the surface densities of the IL-2 receptor α subunits.Regulatory T cells inflict a double hit on effector T cells by lowering the bulk IL-2 concentration as well as the sensitivity of effector T cells to this crucial cytokine.This double hit deprives weakly activated effector T cells of pSTAT5 survival signals while having only minimal effects on strongly activated effector cells that express increased levels of the IL-2 receptor.Short-term signaling differences lead to a differential functional in terms of proliferation and cell division: regulatory T cell specifically suppress weakly activated effector T cells even at large numbers; small numbers of strongly activated effector T cells overcome the suppression

    PO-0638: Adaptive dose painting by numbers for head and neck cancer: interim analysis of a randomised trial

    Get PDF
    International audience1. Recherches sur le Fayuan zayuan yuanshi ji de Sengyou (445-518), première anthologie de rites bouddhiques (suite : le contenu des juan 4 et 5) Notre travail de reconstruction du Fayuan zayuan yuanshi ji 法苑雜緣原始集 (Anthologie [pour comprendre] le commencement et l’origine de diverses [pratiques] dans le jardin des devoirs ; ci-après Fayuan) de Sengyou 僧祐 (445-518) nous a amenés cette année à nous pencher sur les 22 premiers titres de la section sur le saṃgha (Sengbao 僧寶, « Le joyau de la Loi ..

    Pulmonary function is associated with distal aortic calcium, not proximal aortic distensibility. MESA lung study

    Get PDF
    Forced expiratory volume in one second strongly predicts mortality from cardiovascular disease. FEV1 has been associated with aortic stiffness a strong independent predictor of cardiovascular mortality. However, the anatomical site and possible mechanisms linking aortic stiffness and lung function are unknown. We therefore examined if FEV1 and CT percent emphysema were associated with calcification of the abdominal aorta or reduced distensibility of the proximal thoracic aorta.The Multi-Ethnic Study of Atherosclerosis (MESA) measured aortic calcification on cardiac and abdominal CT scans and proximal aortic distensibility using magnetic resonance among participants aged 45–84 years without clinical cardiovascular disease. Spirometry was measured following ATS/ERS guidelines and percent emphysema was measured in the lung fields of cardiac CT scans. Multivariate analyses adjusted for age, sex, race/ethnicity and cardiovascular risk factors. Of 1,917 participants with aortic distensibility measures, 13% were current and 38% were former smokers. Eighteen percent had airflow limitation without asthma. FEV1 was associated with the extent of distal aortic calcification (0.76; 95%CI 0.60–0.97, p = 0.02) but not proximal aortic calcification or proximal aortic distensibility (−0.04 mmHg−1; 95%CI −0.16–0.09 mmHg−1, p = 0.60). Percent emphysema was associated with neither measure. FEV1 was associated with severity of distal aortic calcification where it was present independently of smoking and other cardiovascular risk factors but not with distensibility or calcification of the proximal aorta

    Necrostatin-1 Analogues: Critical Issues on the Specificity, Activity and In Vivo Use in Experimental Disease Models

    Get PDF
    Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1 inhibitor lacking the IDO-targeting effect. Next, although Nec-1i was ∼100 × less effective than Nec-1 in inhibiting human RIPK1 kinase activity in vitro, it was only 10 times less potent than Nec-1 and Nec-1s in a mouse necroptosis assay and became even equipotent at high concentrations. Along the same line, in vivo, high doses of Nec-1, Nec-1i and Nec-1s prevented tumor necrosis factor (TNF)-induced mortality equally well, excluding the use of Nec-1i as an inactive control. Paradoxically, low doses of Nec-1 or Nec-1i, but not Nec -1s, even sensitized mice to TNF-induced mortality. Importantly, Nec-1s did not exhibit this low dose toxicity, stressing again the preferred use of Nec-1s in vivo. Our findings have important implications for the interpretation of Nec-1-based data in experimental disease models

    Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.

    Get PDF
    Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses

    The rationale and design of the perindopril genetic association study (PERGENE): A pharmacogenetic analysis of angiotensin-converting enzyme inhibitor therapy in patients with stable coronary artery disease

    Get PDF
    Background: Angiotensin-converting enzyme (ACE) inhibitors reduce clinical symptoms and improve outcome in patients with hypertension, heart failure, and stable coronary artery disease (CAD) and are among the most frequently used drugs in these patient groups. For hypertension, treatment is guided by the level of blood pressure. In the secondary prevention setting, there are no means of guiding therapy. Prior attempts to target ACE-inhibitors to those patients that are most likely to benefit have not been successful, mainly due to the consistency in the treatment effect in clinical subgroups. Still, for prolonged prophylactic treatment with ACE-inhibitors it would be best to target treatment to only those patients most likely to benefit, which would considerably lower the number needed to treat and increase cost-effectiveness. A new approach for such "tailored-therapy" may be to integrate information on the genetic variation between patients. Until now, pharmacogenetic research of the efficacy of ACE-inhibitor therapy in CAD patients is still in a preliminary stage. Methods: The PERindopril GENEtic association study (PERGENE) is a substudy of the EUROPA trial, a randomized double-blind placebo-controlled multicentre clinical trial which demonstrated a beneficial effect of the ACE-inhibitor perindopril in reducing cardiovascular morbidity and mortality in 12.218 patients with stable coronary artery disease (mean follow-up 4.2 years). Blood tubes were received from patients at the beginning of the EUROPA trial and buffy coats were stored at -40°C at the central core laboratory. Candidate genes were selected in the renin-angiotensin-system and bradykinin pathways. Polymorphisms were selected based on haplotype tagging principles using the HapMap genome project, Seattle and other up-to-date genetic database platforms to comprehensively cover all common genetic variation within the genes. Selection also took into consideration the functionality of SNP's, location within the gene (promoter) and existing relevant literature. The main outcome measure of PERGENE is the effect of genetic factors on the treatment benefit with ACE-inhibitors. The size of this pharmacogenetic substudy allows detection with a statistical power of 98% to detect a difference in hazard ratios (treatment effect) of 20% between genotypes with minor allele frequency of 0.20 (two-sided alpha 0.05). Conclusion: The PERGENE study is a large cardiovascular pharmacogenetic study aimed to assess the feasibility of pharmacogenetic profiling of the treatment effect of ACE-inhibitor use with the perspective to individualize treatment in patients with stable coronary artery disease

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
    corecore