98 research outputs found

    Toplinska obradba elektropećne prašine niskotlačnom plinskom fazom

    Get PDF
    The paper presents the results of laboratory tests on the process of thermal reduction of electric arc furnace dust (EAFD) in the temperature range from 1273 to 1473 K. Before proceeding to the experimental tests, a thermodynamic analysis was made using the computer program FactSage® with the aim of determining the optimal conditions for the dust components reduction reaction to proceed. The results of tests carried out, respectively, under atmospheric pressure conditions and under reduced pressure conditions are presented, where carbon in the form of graphite and blast-furnace dust (containing approx. 40 % of carbon) was used as the reducer. The test results represent the effect of reduced pressure on the potential for intensifying the process of zinc removal from the dust. The degree of zinc extraction was considerably higher compared to the results of tests carried out under atmospheric pressure conditions.Toplinska obradba elektropećne prašine niskotlačnom plinskom fazom. Članak daje rezultate laboratorijskih istraživanja procesa toplinske obradbe elektropećne prašine (EPP) u temperaturnim intervalima 1273 K do 1473 K. Prije provođenja laboratorijskih opita ustrojena je termodinamička analiza računalnim programom FactSage(R) s ciljem određivanja optimalnih uvjeta reakcija procesa smanjenja komponenti prašine. Izlazni rezultati pokusa, pojedinačno, pod uvjetima atmosferskog i sniženog tlaka su predočeni, gdje je ugljik u grafitnom obliku i visokopećnoj prašini (sadržaj cca 40 % ugljika) bio reducent. Rezultati pokusa daju efekt sniženog tlaka na potencijal za intenzificiranje procesa uklanjanja cinka iz prašine. Stupanj uklanjanja cinka je znatno viši u usporedbi s pokusima izvedenim pri normalnim atmosferskim uvjetima

    Soil steaming to disinfect barnyardgrass-infested soil masses

    Get PDF
    Reusing soil can reduce environmental impacts associated with obtaining natural fresh soil during road construction and analogous activities. However, the movement and reuse of soils can spread numerous plant diseases and pests, including propagules of weeds and invasive alien plant species. To avoid the spread of barnyardgrass in reused soil, its seeds must be killed before that soil is spread to new areas. We investigated the possibility of thermal control of barnyardgrass seeds using a prototype of a stationary soil steaming device. One Polish and four Norwegian seed populations were examined for thermal sensitivity. To mimic a natural range in seed moisture content, dried seeds were moistened for 0, 12, 24, or 48 h before steaming. To find effective soil temperatures and whether exposure duration is important, we tested target soil temperatures in the range 60 to 99 C at an exposure duration of 90 s (Experiment 1) and exposure durations of 30, 90, or 180 s with a target temperature of 99 C (Experiment 2). In a third experiment, we tested exposure durations of 90, 180, and 540 s at 99 C (Experiment 3). Obtaining target temperatures was challenging. For target temperatures of 60, 70, 80, and 99 C, the actual temperatures obtained were 59 to 69, 74 to 76, 77 to 83, and 94 to 99 C, respectively. After steaming treatments, seed germination was followed for 28 d in a greenhouse. Maximum soil temperature affected seed germination, but exposure duration did not. Seed premoistening was of influence but varied among temperatures and populations. The relationships between maximum soil temperature and seed germination were described by a common dose–response function. Seed germination was reduced by 50% when the maximum soil temperature reached 62 to 68 C and 90% at 76 to 86 C. For total weed control, 94 C was required in four populations, whereas 79 C was sufficient in one Norwegian population.Soil steaming to disinfect barnyardgrass-infested soil massespublishedVersio

    Biologisk veiledningsprøving 2022. Ugrasmidler

    Get PDF
    I denne rapporten presenteres resultater fra biologisk veiledningsprøving av ugrasmidler; mot ugras i golfgras, mot ugras i vårkorn inkl. testing av VIPS-Ugras, mot fangvekster og ugras i utendørs småskalaforsøk, mot ugras i potet under plast/fiberduk, til nedvisning av potetris, mot søtvierarter uten kultur, mot ugras og jordbærutløpere i jordbær og mot ugras i eple, samt ulike strategier mot ugras i gulrot og rotpersille.Biologisk veiledningsprøving 2022. UgrasmidlerpublishedVersio

    Is FLT3 internal tandem duplication an unfavorable risk factor for high risk children with acute myeloid leukemia? : Polish experience

    Get PDF
    According to the AML-BFM 2004 Interim, a treatment protocol used in Poland since 2005, presence of FLT3 internal tandem duplication (FLT3/ITD) qualifies a patient with acute myeloid leukemia (AML) to a high-risk group (HRG). The present study was aimed to identify the prevalence of FLT3/ITD in children with AML in Poland and to evaluate its prognostic significance in the HRG patients. Out of 291 children with de novo AML treated in 14 Polish centers between January 2006 and December 2012, samples from 174 patients were available for FLT3/ITD analysis. Among study patients 108 children (61.7%) were qualified to HRG. Genomic DNA samples from bone marrow were tested for identification of FLT3/ITD mutation by PCR amplification of exon 14 and 15 of FLT3 gene. Clinical features and treatment outcome in patients with and without FLT3/ITD were analyzed in the study. The FLT3/ITD was found in 14 (12.9%) of 108 HRG children. There were no significant differences between children with and without FLT3/ITD in age and FAB distribution. The white blood cells count in peripheral blood at diagnosis was significantly higher (p <0.01) in the children with FLT3/ITD. Over 5-year overall survival rate for FLT3/ITD positive children was worse (42.4%) comparing to FLT3/ITD negative children (58.9%), but the statistical difference was not significant. However, over 5-year survivals free from treatment failures were similar. The FLT3/ITD rate (12.9%) observed in the study corresponded to the published data. There was no significant impact of FLT3/ITD mutation on survival rates, although further studies are needed on this subject

    Multizone Paper Platform for 3D Cell Cultures

    Get PDF
    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures

    High throughput screening for discovery of materials that control stem cell fate

    Get PDF
    Insights into the complex stem cell niche have identified the cell–material interface to be a potent regulator of stem cell fate via material properties such as chemistry, topography and stiffness. In light of this, materials scientists have the opportunity to develop bioactive materials for stem cell culture that elicit specific cellular responses. To accelerate materials discovery, high throughput screening platforms have been designed which can rapidly evaluate combinatorial material libraries in two and three-dimensional environments. In this review, we present screening platforms for the discovery of material properties that influence stem cell behavior

    From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications

    Get PDF
    This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities
    corecore