172 research outputs found

    Structure of Protocluster Galaxies: Accelerated Structural Evolution in Overdense Environments?

    Full text link
    We present a high spatial-resolution HST/NICMOS imaging survey in the field of a known protocluster surrounding the powerful radio galaxy MRC1138-262 at z=2.16. Previously, we have shown that this field exhibits a substantial surface overdensity of red J-H galaxies. Here we focus on the stellar masses and galaxy effective radii in an effort to compare and contrast the properties of likely protocluster galaxies with their field counterparts and to look for correlations between galaxy structure and (projected) distance relative to the radio galaxy. We find a hint that quiescent, cluster galaxies are on average less dense than quiescent field galaxies of similar stellar mass and redshift. In fact, we find only two (of nine) quiescent protocluster galaxies are of simliar density to the majority of the massive, quiescent compact galaxies (SEEDs) found in several field surveys. Furthermore, there is some indication that the structural Sersic n parameter is higher (n ~ 3-4) on average for cluster galaxies compared to the field SEEDs (n ~ 1-2) This result may imply that the accelerated galaxy evolution expected (and observed) in overdense regions also extends to structural evolution presuming that massive galaxies began as dense (low n) SEEDs and have already evolved to be more in line with local galaxies of the same stellar mass.Comment: 11 pages, 7 figures, 1 table, Accepted for publication in Ap

    Vacuum inversion and securing of distal colonic pseudodiverticula with novel spiked O-rings

    Get PDF
    Diverticular disease is increasingly prevalent in Western societies and is associated with significant morbidity. OBJECTIVE: Two-stage endoscopic device development for inversion and secured ligation of colonic diverticula; first, human cadaver studies were performed to measure forces required for diverticular inversion; second, a novel set of devices (elastic spiked O-ring with delivery system) was tested in animals. DESIGN: Prospective, observational study of human cadavers and prospective, interventional study of a porcine model. SETTING: University hospital pathology laboratory and animal facility. INTERVENTION: Full-thickness inversion of the colonic wall with a pipelike delivery instrument to produce an inverted pseudodiverticulum that was secured with a spiked O-ring. MAIN OUTCOME MEASUREMENTS: The forces required for diverticular inversion, the secured closure of inverted pseudodiverticula, and the time until necrotic tissue falls off. RESULTS: A total of 248 of 248 of cadaveric sigmoid diverticula could be inverted by means of vacuum or forceps. The forces required for inversion ranged from 0.28 to 0.47 N (median, 0.37 N). Twenty-four spiked O-rings were delivered in 6 living pigs to produce 24 inverted pseudodiverticula. One animal died the day after the procedure of a pulmonary thromboembolism. In the remaining 5 pigs, all delivered spiked O-rings remained in place for 7 to 22 days. At necropsy, none of the inverted sites showed signs of perforation but rather full-thickness reparative scarring with ingrowth of connective tissue. LIMITATIONS: Animal model, stiff pipelike delivery instrument, variations in diverticular location, diameter, and size. CONCLUSIONS: Endoluminal inversion and securing of colonic diverticula induces tissue necrosis, diverticular sloughing, and full-thickness scarring

    Taking the pulse of Mars via dating of a plume-fed volcano

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    The SL2S Galaxy-scale Lens Sample. II. Cosmic evolution of dark and luminous mass in early-type galaxies

    Full text link
    We present a joint gravitational lensing and stellar-dynamical analysis of 11 early-type galaxies (median deflector redshift \zd=0.5) from Strong Lenses in the Legacy Survey (SL2S). Using newly measured redshifts and stellar velocity dispersions from Keck spectroscopy with lens models from Paper I, we derive the total mass density slope inside the Einstein radius for each of the 11 lenses. The average total density slope is found to be =2.16−0.09+0.09= 2.16^{+0.09}_{-0.09} (ρtot∝r−γâ€Č\rho_{\rm tot}\propto r^{-\gamma'}), with an intrinsic scatter of 0.25−0.07+0.100.25^{+0.10}_{-0.07}. We also determine the dark matter fraction for each lens within half the effective radius, and find the average projected dark matter mass fraction to be 0.42−0.08+0.080.42^{+0.08}_{-0.08} with a scatter of 0.20−0.07+0.090.20^{+0.09}_{-0.07} for a Salpeter IMF. By combining the SL2S results with those from the Sloan Lens ACS Survey (median \zd=0.2) and the Lenses Structure and Dynamics survey (median \zd=0.8), we investigate cosmic evolution of Îłâ€Č\gamma' and find a mild trend \partial/\partial\zd = -0.25^{+0.10}_{-0.12}. This suggests that the total density profile of massive galaxies has become slightly steeper over cosmic time. If this result is confirmed by larger samples, it would indicate that dissipative processes played some role in the growth of massive galaxies since z∌1z\sim1.Comment: 21 pages, 16 figures, submitted to Ap

    Discovery of a rich proto-cluster at z=2.9 and associated diffuse cold gas in the VIMOS Ultra-Deep Survey (VUDS)

    Full text link
    [Abridged] We characterise a massive proto-cluster at z=2.895 that we found in the COSMOS field using the spectroscopic sample of the VIMOS Ultra-Deep Survey (VUDS). This is one of the rare structures at z~3 not identified around AGNs or radio galaxies, so it is an ideal laboratory to study galaxy formation in dense environments. The structure comprises 12 galaxies with secure spectroscopic redshift in an area of 7'x8', in a z bin of Dz=0.016. The measured galaxy number overdensity is delta_g=12+/-2. This overdensity has total mass of M~8.1x10^(14)M_sun in a volume of 13x15x17 Mpc^3. Simulations indicate that such an overdensity at z~2.9 is a proto-cluster that will collapse in a cluster of total mass M~2.5x10^(15)M_sun at z=0. We compare the properties of the galaxies within the overdensity with a control sample at the same z but outside the overdensity. We did not find any statistically significant difference between the properties (stellar mass, SFR, sSFR, NUV-r, r-K) of the galaxies inside and outside the overdensity. The stacked spectrum of galaxies in the overdensity background shows a significant absorption feature at the wavelength of Lya redshifted at z=2.895 (lambda=4736 A), with a rest frame EW = 4+/- 1.4 A. Stacking only background galaxies without intervening sources at z~2.9 along their line of sight, we find that this absorption feature has a rest frame EW of 10.8+/-3.7 A, with a detection S/N of ~4. These EW values imply a high column density (N(HI)~3-20x10^(19)cm^(-2)), consistent with a scenario where such absorption is due to intervening cold gas streams, falling into the halo potential wells of the proto-cluster galaxies. However, we cannot exclude the hypothesis that this absorption is due to the diffuse gas within the overdensity.Comment: 15 pages, 9 figures, accepted for publication in A&A (revised version after referee's comments and language editing

    Discovering extremely compact and metal-poor, star-forming dwarf galaxies out to z ~ 0.9 in the VIMOS Ultra-Deep Survey

    Full text link
    We report the discovery of 31 low-luminosity (-14.5 > M_{AB}(B) > -18.8), extreme emission line galaxies (EELGs) at 0.2 < z < 0.9 identified by their unusually high rest-frame equivalent widths (100 < EW[OIII] < 1700 A) as part of the VIMOS Ultra Deep Survey (VUDS). VIMOS optical spectra of unprecedented sensitivity (IABI_{AB} ~ 25 mag) along with multiwavelength photometry and HST imaging are used to investigate spectrophotometric properties of this unique sample and explore, for the first time, the very low stellar mass end (M* < 10^8 M⊙_{\odot}) of the luminosity-metallicity (LZR) and mass-metallicity (MZR) relations at z < 1. Characterized by their extreme compactness (R50 < 1 kpc), low stellar mass and enhanced specific star formation rates (SFR/M* ~ 10^{-9} - 10^{-7} yr^{-1}), the VUDS EELGs are blue dwarf galaxies likely experiencing the first stages of a vigorous galaxy-wide starburst. Using T_e-sensitive direct and strong-line methods, we find that VUDS EELGs are low-metallicity (7.5 < 12+log(O/H) < 8.3) galaxies with high ionization conditions, including at least three EELGs showing HeII 4686A emission and four EELGs of extremely metal-poor (<10% solar) galaxies. The LZR and MZR followed by EELGs show relatively large scatter, being broadly consistent with the extrapolation toward low luminosity and mass from previous studies at similar redshift. However, we find evidences that galaxies with younger and more vigorous star formation -- as characterized by their larger EWs, ionization and sSFR -- tend to be more metal-poor at a given stellar mass.Comment: Letter in A&A 568, L8 (2014). This replacement matches the published versio

    The evolution of clustering length, large-scale bias and host halo mass at 2<z<5 in the VIMOS Ultra Deep Survey (VUDS)

    Get PDF
    We investigate the evolution of galaxy clustering for galaxies in the redshift range 2.0<zz<5.0 using the VIMOS Ultra Deep Survey (VUDS). We present the projected (real-space) two-point correlation function wp(rp)w_p(r_p) measured by using 3022 galaxies with robust spectroscopic redshifts in two independent fields (COSMOS and VVDS-02h) covering in total 0.8 deg2^2. We quantify how the scale dependent clustering amplitude r0r_0 changes with redshift making use of mock samples to evaluate and correct the survey selection function. Using a power-law model Ο(r)=(r/r0)−γ\xi(r) = (r/r_0)^{-\gamma} we find that the correlation function for the general population is best fit by a model with a clustering length r0r_0=3.95−0.54+0.48^{+0.48}_{-0.54} h−1^{-1}Mpc and slope Îł\gamma=1.8−0.06+0.02^{+0.02}_{-0.06} at zz~2.5, r0r_0=4.35±\pm0.60 h−1^{-1}Mpc and Îł\gamma=1.6−0.13+0.12^{+0.12}_{-0.13} at zz~3.5. We use these clustering parameters to derive the large-scale linear galaxy bias bLPLb_L^{PL}, between galaxies and dark matter. We find bLPLb_L^{PL} = 2.68±\pm0.22 at redshift zz~3 (assuming σ8\sigma_8 = 0.8), significantly higher than found at intermediate and low redshifts. We fit an HOD model to the data and we obtain that the average halo mass at redshift zz~3 is MhM_h=1011.75±0.23^{11.75\pm0.23} h−1^{-1}M⊙_{\odot}. From this fit we confirm that the large-scale linear galaxy bias is relatively high at bLHODb_L^{HOD} = 2.82±\pm0.27. Comparing these measurements with similar measurements at lower redshifts we infer that the star-forming population of galaxies at zz~3 should evolve into the massive and bright (MrM_r<-21.5) galaxy population which typically occupy haloes of mass ⟹Mh⟩\langle M_h\rangle = 1013.9^{13.9} h−1^{-1} M⊙M_{\odot} at redshift zz=0.Comment: 19 pages, 10 figures, submitted to A&

    The VIMOS Ultra Deep Survey: Lyα\alpha Emission and Stellar Populations of Star-Forming Galaxies at 2<z<2.5

    Get PDF
    The aim of this paper is to investigate spectral and photometric properties of 854 faint (iABi_{AB}<~25 mag) star-forming galaxies (SFGs) at 2<z<2.5 using the VIMOS Ultra-Deep Survey (VUDS) spectroscopic data and deep multi-wavelength photometric data in three extensively studied extragalactic fields (ECDFS, VVDS, COSMOS). These SFGs were targeted for spectroscopy based on their photometric redshifts. The VUDS spectra are used to measure the UV spectral slopes (ÎČ\beta) as well as Lyα\alpha equivalent widths (EW). On average, the spectroscopically measured ÎČ\beta (-1.36±\pm0.02), is comparable to the photometrically measured ÎČ\beta (-1.32±\pm0.02), and has smaller measurement uncertainties. The positive correlation of ÎČ\beta with the Spectral Energy Distribution (SED)-based measurement of dust extinction, Es_{\rm s}(B-V), emphasizes the importance of ÎČ\beta as an alternative dust indicator at high redshifts. To make a proper comparison, we divide these SFGs into three subgroups based on their rest-frame Lyα\alpha EW: SFGs with no Lyα\alpha emission (SFGN_{\rm N}; EW≀\le0\AA), SFGs with Lyα\alpha emission (SFGL_{\rm L}; EW>>0\AA), and Lyα\alpha emitters (LAEs; EW≄\ge20\AA). The fraction of LAEs at these redshifts is ∌\sim10%, which is consistent with previous observations. We compared best-fit SED-estimated stellar parameters of the SFGN_{\rm N}, SFGL_{\rm L} and LAE samples. For the luminosities probed here (∌\simL∗^*), we find that galaxies with and without Lyα\alpha in emission have small but significant differences in their SED-based properties. We find that LAEs have less dust, and lower star-formation rates (SFR) compared to non-LAEs. We also find that LAEs are less massive compared to non-LAEs, though the difference is smaller and less significant compared to the SFR and Es_{\rm s}(B-V). [abridged]Comment: Accepted for publication in A&A, 19 pages, 10 figures, 1 tabl

    The impact of the Star Formation Histories on the SFR-M∗_{*} relation at z≄\ge2

    Full text link
    In this paper we investigate the impact of different star formation histories (SFHs) on the relation between stellar mass M∗_{*} and star formation rate (SFR) using a sample of galaxies with reliable spectroscopic redshift zspec>2 drawn from the VIMOS Ultra-Deep Survey (VUDS). We produce an extensive database of dusty model galaxies, calculated starting from the new library of single stellar population (SSPs) models presented in Cassara' et al. 2013 and weighted by a set of 28 different SFHs based on the Schmidt function, and characterized by different ratios of the gas infall time scale τinfall\tau_{infall} to the star formation efficiency Îœ\nu. The treatment of dust extinction and re-emission has been carried out by means of the radiative transfer calculation. The spectral energy distribution (SED) fitting technique is performed by using GOSSIP+, a tool able to combine both photometric and spectroscopic information to extract the best value of the physical quantities of interest, and to consider the Intergalactic Medium (IGM) attenuation as a free parameter. We find that the main contribution to the scatter observed in the SFR−M∗SFR-M_{*} plane is the possibility of choosing between different families of SFHs in the SED fitting procedure, while the redshift range plays a minor role. The majority of the galaxies, at all cosmic times, are best-fit by models with SFHs characterized by a high τinfall/Îœ\tau_{\rm infall}/\nu ratio. We discuss the reliability of the presence of a small percentage of dusty and highly star forming galaxies, in the light of their detection in the FIR.Comment: 14 pages, 13 figures, accepted for pubblication in A&

    The VIMOS Ultra Deep Survey First Data Release: spectra and spectroscopic redshifts of 698 objects up to z~6 in CANDELS

    Get PDF
    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The DR1 includes all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECFDS survey areas, including accurate spectroscopic redshifts z_spec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have z_spec>2, 48 with z_spec>4, and the highest reliable redshifts reach beyond z_spec=6. This dataset approximately doubles the number of galaxies with spectroscopic redshifts at z>3 in these fields. We discuss the general properties of the sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-alpha equivalent widths, and physical properties including stellar masses M_star and star formation rates (SFR) derived from spectral energy distribution fitting with the knowledge of z_spec. We highlight the properties of the most massive star-forming galaxies, noting the large range in spectral properties, with Lyman-alpha in emission or in absorption, and in imaging properties with compact, multi-component or pair morphologies. We present the catalogue database and data products. All data are publicly available and can be retrieved from a dedicated query-based database available at http://cesam.lam.fr/vuds.Comment: 11 pages, 6 figures, submitted to A&
    • 

    corecore