1,207 research outputs found

    3D simulations of shear instabilities in magnetized flows

    Get PDF
    We present results of three-dimensional (3D) simulations of the magnetohydrodynamic Kelvin-Helmholtz instability in a stratified shear layer. The magnetic field is taken to be uniform and parallel to the shear flow. We describe the evolution of the fluid flow and the magnetic field for a range of initial conditions. In particular, we investigate how the mixing rate of the fluid depends on the Richardson number and the magnetic field strength. It was found that the magnetic field can enhance as well as suppress mixing. Moreover, we have performed two-dimensional (2D) simulations and discuss some interesting differences between the 2D and 3D results.Comment: submitted to MNRAS, figures in colour and higher quality at http://www.mpa-garching.mpg.de/~maria/greenreports/mpa00/reports_00.htm

    The turbulent pressure support in galaxy clusters revisited

    Full text link
    Due to their late formation in cosmic history, clusters of galaxies are not fully in hydrostatic equilibrium and the gravitational pull of their mass at a given radius is expected not to be entirely balanced by the thermal gas pressure. Turbulence may supply additional pressure, and recent (X-ray and SZ) hydrostatic mass reconstructions claim a pressure support of ∼5−15%\sim 5-15\% of the total pressure at R200R_{\rm 200}. In this work we show that, after carefully disentangling bulk from small-scale turbulent motions in high-resolution simulations of galaxy clusters, we can constrain which fraction of the gas kinetic energy effectively provides pressure support in the cluster's gravitational potential. While the ubiquitous presence of radial inflows in the cluster can lead to significant bias in the estimate of the non-thermal pressure support, we report that only a part of this energy effectively acts as a source of pressure, providing a support of the order of ∼10%\sim 10\% of the total pressure at R200R_{\rm 200}.Comment: 5 pages, 5 pages, accepted, to appear in MNRAS Letter

    Viscous Kelvin-Helmholtz instabilities in highly ionised plasmas

    Get PDF
    Transport coefficients in highly ionised plasmas like the intra-cluster medium (ICM) are still ill-constrained. They influence various processes, among them the mixing at shear flow interfaces due to the Kelvin-Helmholtz instability (KHI). The observed structure of potential mixing layers can be used to infer the transport coefficients, but the data interpretation requires a detailed knowledge of the long-term evolution of the KHI under different conditions. Here we present the first systematic numerical study of the effect of constant and temperature-dependent isotropic viscosity over the full range of possible values. We show that moderate viscosities slow down the growth of the KHI and reduce the height of the KHI rolls and their rolling-up. Viscosities above a critical value suppress the KHI. The effect can be quantified in terms of the Reynolds number Re = U{\lambda}/{\nu}, where U is the shear velocity, {\lambda} the perturbation length, and {\nu} the kinematic viscosity. We derive the critical Re for constant and temperature dependent, Spitzer-like viscosities, an empirical relation for the viscous KHI growth time as a function of Re and density contrast, and describe special behaviours for Spitzer-like viscosities and high density contrasts. Finally, we briefly discuss several astrophysical situations where the viscous KHI could play a role, i.e., sloshing cold fronts, gas stripping from galaxies, buoyant cavities, ICM turbulence, and high velocity clouds.Comment: Accepted by MNRAS. 22 pages, 21 figure

    Turbulent pressure support and hydrostatic mass-bias in the intracluster medium

    Full text link
    The degree of turbulent pressure support by residual gas motions in galaxy clusters is not well known. Mass modelling of combined X-ray and Sunyaev Zel'dovich observations provides an estimate of turbulent pressure support in the outer regions of several galaxy clusters. Here, we test two different filtering techniques to disentangle bulk from turbulent motions in non-radiative high-resolution cosmological simulations of galaxy clusters using the cosmological hydro code ENZO. We find that the radial behavior of the ratio of non-thermal pressure to total gas pressure as a function of cluster-centric distance can be described by a simple polynomial function. The typical non-thermal pressure support in the centre of clusters is ∼\sim5%, increasing to ∼\sim15% in the outskirts, in line with the pressure excess found in recent X-ray observations. While the complex dynamics of the ICM makes it impossible to reconstruct a simple correlation between turbulent motions and hydrostatic bias, we find that a relation between them can be established using the median properties of a sample of objects. Moreover, we estimate the contribution of radial accelerations to the non-thermal pressure support and conclude that it decreases moving outwards from 40% (in the core) to 15% (in the cluster's outskirts). Adding this contribution to one provided by turbulence, we show that it might account for the entire observed hydrostatic bias in the innermost regions of the clusters, and for less than 80% of it at r>0.8r200,mr > 0.8 r_{200, m}.Comment: 20 pages; 21 figures; Substantial Revision; MNRAS in pres

    Abell 1033: birth of a radio phoenix

    Full text link
    Extended steep-spectrum radio emission in a galaxy cluster is usually associated with a recent merger. However, given the complex scenario of galaxy cluster mergers, many of the discovered sources hardly fit into the strict boundaries of a precise taxonomy. This is especially true for radio phoenixes that do not have very well defined observational criteria. Radio phoenixes are aged radio galaxy lobes whose emission is reactivated by compression or other mechanisms. Here, we present the detection of a radio phoenix close to the moment of its formation. The source is located in Abell 1033, a peculiar galaxy cluster which underwent a recent merger. To support our claim, we present unpublished Westerbork Synthesis Radio Telescope and Chandra observations together with archival data from the Very Large Array and the Sloan Digital Sky Survey. We discover the presence of two sub-clusters displaced along the N-S direction. The two sub-clusters probably underwent a recent merger which is the cause of a moderately perturbed X-ray brightness distribution. A steep-spectrum extended radio source very close to an AGN is proposed to be a newly born radio phoenix: the AGN lobes have been displaced/compressed by shocks formed during the merger event. This scenario explains the source location, morphology, spectral index, and brightness. Finally, we show evidence of a density discontinuity close to the radio phoenix and discuss the consequences of its presence.Comment: accepted MNRA

    Deep LOFAR 150 MHz imaging of the Bo\"otes field: Unveiling the faint low-frequency sky

    Get PDF
    We have conducted a deep survey (with a central rms of 55μJy55\mu\textrm{Jy}) with the LOw Frequency ARray (LOFAR) at 120-168 MHz of the Bo\"otes field, with an angular resolution of 3.98′′×6.45′′3.98^{''}\times6.45^{''}, and obtained a sample of 10091 radio sources (5σ5\sigma limit) over an area of 20 deg220\:\textrm{deg}^{2}. The astrometry and flux scale accuracy of our source catalog is investigated. The resolution bias, incompleteness and other systematic effects that could affect our source counts are discussed and accounted for. The derived 150 MHz source counts present a flattening below sub-mJy flux densities, that is in agreement with previous results from high- and low- frequency surveys. This flattening has been argued to be due to an increasing contribution of star-forming galaxies and faint active galactic nuclei. Additionally, we use our observations to evaluate the contribution of cosmic variance to the scatter in source counts measurements. The latter is achieved by dividing our Bo\"otes mosaic into 10 non-overlapping circular sectors, each one with an approximate area of 2 deg2.2\:\textrm{deg}^{2}. The counts in each sector are computed in the same way as done for the entire mosaic. By comparing the induced scatter with that of counts obtained from depth observations scaled to 150MHz, we find that the 1σ1\sigma scatter due to cosmic variance is larger than the Poissonian errors of the source counts, and it may explain the dispersion from previously reported depth source counts at flux densities S<1 mJyS<1\,\textrm{mJy}. This work demonstrates the feasibility of achieving deep radio imaging at low-frequencies with LOFAR.Comment: A\&A in press. 15 pages, 16 figure

    Untangling cosmic magnetic fields: Faraday tomography at metre wavelengths with LOFAR

    Get PDF
    14 pages, 6 figures. Accepted for publication in "The Power of Faraday Tomography" special issue of GalaxiesThe technique of Faraday tomography is a key tool for the study ofmagnetised plasmas in the new era of broadband radio-polarisation observations. In particular, observations at metre wavelengths provide significantly better Faraday depth accuracies compared to traditional centimetre-wavelength observations. However, the effect of Faraday depolarisationmakes the polarised signal very challenging to detect at metre wavelengths (MHz frequencies). In this work, Faraday tomography is used to characterise the Faraday rotation properties of polarised sources found in data from the LOFAR Two-Metre Sky Survey (LoTSS). Of the 76 extragalactic polarised sources analysed here, we find that all host a radio-loud AGN (Active Galactic Nucleus). The majority of the sources (~64%) are large FRII radio galaxies with a median projected linear size of 710 kpc and median radio luminosity at 144 MHz of 4 × 10 26 W Hz -1 (with ~13% of all sources having a linear size > 1 Mpc). In several cases, both hotspots are detected in polarisation at an angular resolution of ~20'. One such case allowed a study of intergalactic magnetic fields on scales of 3.4 Mpc. Other detected source types include an FRI radio galaxy and at least eight blazars. Most sources display simple Faraday spectra, but we highlight one blazar that displays a complex Faraday spectrum, with two close peaks in the Faraday dispersion function.Peer reviewe

    The large-scale shock in the cluster of galaxies Hydra A

    Full text link
    We analyzed a deep XMM-Newton observation of the cluster of galaxies Hydra A, focusing on the large-scale shock discovered as a surface brightness discontinuity in Chandra images. The shock front can be seen both in the pressure map and in temperature profiles in several sectors. The Mach numbers determined from the temperature jumps are in good agreement with the Mach numbers derived from EPIC/pn surface brightness profiles and previously from Chandra data and are consistent with M~1.3. The estimated shock age in the different sectors using a spherically symmetric point explosion model ranges between 130 and 230 Myr and the outburst energy between 1.5 and 3e61 ergs. The shape of the shock seen in the pressure map can be approximated with an ellipse centered 70 kpc towards the NE from the cluster center. We aimed to develop a better model that can explain the offset between the shock center and the AGN and give a consistent result on the shock age and energy. To this end, we performed 3D hydrodynamical simulations in which the shock is produced by a symmetrical pair of AGN jets launched in a spherical galaxy cluster. As an explanation of the observed offset of the shock center, we consider large-scale bulk flows in the intracluster medium. The simulation successfully reproduces the size, ellipticity, and average Mach number of the observed shock front. The predicted age of the shock is 160 Myr and the total input energy 3e61 erg. Both values are within the range determined by the spherically symmetric model. Matching the observed 70 kpc offset of the shock ellipse from the cluster center requires large-scale coherent motions with a high velocity of 670 km/s. We discuss the feasibility of this scenario and offer alternative ways to produce the offset and to further improve the simulation.Comment: 14 pages, accepted for publication in A&A, minor revision compared to previous versio

    VLA Radio Observations of the HST Frontier Fields Cluster Abell 2744: The Discovery of New Radio Relics

    Get PDF
    Cluster mergers leave distinct signatures in the ICM in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not fully understood. Here we present new 1-4 GHz Jansky Very Large Array (VLA) and archival Chandra observations of the HST Frontier Fields Cluster Abell 2744. In our new VLA images, we detect the previously known ∼2.1\sim2.1 Mpc radio halo and ∼1.5\sim1.5 Mpc radio relic. We carry out a radio spectral analysis from which we determine the relic's injection spectral index to be αinj=−1.12±0.19\alpha_{\rm{inj}} = -1.12 \pm 0.19. This corresponds to a shock Mach number of M\mathcal{M} = 2.05−0.19+0.31^{+0.31}_{-0.19} under the assumption of diffusive shock acceleration. We also find evidence for spectral steepening in the post-shock region. We do not find evidence for a significant correlation between the radio halo's spectral index and ICM temperature. In addition, we observe three new polarized diffuse sources and determine two of these to be newly discovered giant radio relics. These two relics are located in the southeastern and northwestern outskirts of the cluster. The corresponding integrated spectral indices measure −1.81±0.26-1.81 \pm 0.26 and −0.63±0.21-0.63 \pm 0.21 for the SE and NW relics, respectively. From an X-ray surface brightness profile we also detect a possible density jump of R=1.39−0.22+0.34R=1.39^{+0.34}_{-0.22} co-located with the newly discovered SE relic. This density jump would correspond to a shock front Mach number of M=1.26−0.15+0.25\mathcal{M}=1.26^{+0.25}_{-0.15}.Comment: accepted for publication in Ap
    • …
    corecore