256 research outputs found

    Electro-impulse de-icing testing analysis and design

    Get PDF
    Electro-Impulse De-Icing (EIDI) is a method of ice removal by sharp blows delivered by a transient electromagnetic field. Detailed results are given for studies of the electrodynamic phenomena. Structural dynamic tests and computations are described. Also reported are ten sets of tests at NASA's Icing Research Tunnel and flight tests by NASA and Cessna Aircraft Company. Fabrication of system components are described and illustrated. Fatigue and electromagnetic interference tests are reported. Here, the necessary information for the design of an EIDI system for aircraft is provided

    Quantum entanglement between a nonlinear nanomechanical resonator and a microwave field

    Get PDF
    We consider a theoretical model for a nonlinear nanomechanical resonator coupled to a superconducting microwave resonator. The nanomechanical resonator is driven parametrically at twice its resonance frequency, while the superconducting microwave resonator is driven with two tones that differ in frequency by an amount equal to the parametric driving frequency. We show that the semi-classical approximation of this system has an interesting fixed point bifurcation structure. In the semi-classical dynamics a transition from stable fixed points to limit cycles is observed as one moves from positive to negative detuning. We show that signatures of this bifurcation structure are also present in the full dissipative quantum system and further show that it leads to mixed state entanglement between the nanomechanical resonator and the microwave cavity in the dissipative quantum system that is a maximum close to the semi-classical bifurcation. Quantum signatures of the semi-classical limit-cycles are presented.Comment: 36 pages, 18 figure

    Optimal strategies for a game on amenable semigroups

    Full text link
    The semigroup game is a two-person zero-sum game defined on a semigroup S as follows: Players 1 and 2 choose elements x and y in S, respectively, and player 1 receives a payoff f(xy) defined by a function f from S to [-1,1]. If the semigroup is amenable in the sense of Day and von Neumann, one can extend the set of classical strategies, namely countably additive probability measures on S, to include some finitely additive measures in a natural way. This extended game has a value and the players have optimal strategies. This theorem extends previous results for the multiplication game on a compact group or on the positive integers with a specific payoff. We also prove that the procedure of extending the set of allowed strategies preserves classical solutions: if a semigroup game has a classical solution, this solution solves also the extended game.Comment: 17 pages. To appear in International Journal of Game Theor

    Small-molecule lysophosphatidic acid receptor 5 (LPAR5) antagonists: versatile pharmacological tools to regulate inflammatory signaling in BV-2 microglia cells

    Get PDF
    Lysophosphatidic acid (LPA) species in the extracellular environment induce downstream signaling via six different G protein-coupled receptors (LPAR1-6). These signaling cascades are essential for normal brain development and function of the nervous system. However, in response to acute or chronic central nervous system (CNS) damage, LPA levels increase and aberrant signaling events can counteract brain function. Under neuro-inflammatory conditions signaling along the LPA/LPAR5 axis induces a potentially neurotoxic microglia phenotype indicating the need for new pharmacological intervention strategies. Therefore, we compared the effects of two novel small-molecule LPAR5 antagonists on LPA-induced polarization parameters of the BV-2 microglia cell line. AS2717638 is a selective piperidine-based LPAR5 antagonist (IC(50) 0.038 μM) while compound 3 is a diphenylpyrazole derivative with an IC(50) concentration of 0.7 μM in BV-2 cells. Both antagonists compromised cell viability, however, at concentrations above their IC(50) concentrations. Both inhibitors blunted LPA-induced phosphorylation of STAT1 and STAT3, p65, and c-Jun and consequently reduced the secretion of pro-inflammatory cyto-/chemokines (IL-6, TNFα, IL-1β, CXCL10, CXCL2, and CCL5) at non-toxic concentrations. Both compounds modulated the expression of intracellular (COX-2 and Arg1) and plasma membrane-located (CD40, CD86, and CD206) polarization markers yet only AS2717638 attenuated the neurotoxic potential of LPA-activated BV-2 cell-conditioned medium towards CATH.a neurons. Our findings from the present in vitro study suggest that the two LPAR5 antagonists represent valuable pharmacological tools to interfere with LPA-induced pro-inflammatory signaling cascades in microglia

    Target prediction and a statistical sampling algorithm for RNA-RNA interaction

    Get PDF
    It has been proven that the accessibility of the target sites has a critical influence for miRNA and siRNA. In this paper, we present a program, rip2.0, not only the energetically most favorable targets site based on the hybrid-probability, but also a statistical sampling structure to illustrate the statistical characterization and representation of the Boltzmann ensemble of RNA-RNA interaction structures. The outputs are retrieved via backtracing an improved dynamic programming solution for the partition function based on the approach of Huang et al. (Bioinformatics). The O(N6)O(N^6) time and O(N4)O(N^4) space algorithm is implemented in C (available from \url{http://www.combinatorics.cn/cbpc/rip2.html})Comment: 7 pages, 10 figure

    Characterization of viscoplasticity behaviour of P91 and P92 power plant steels

    Get PDF
    This paper deals with the determination of material constitutive model for P91 and P92 steels at high temperatures. An isothermal, strain-controlled test programme was conducted for both steels for a temperature range between 400 and 675 °C. The experimental data from these tests were used to obtain the material constants in a viscoplasticity model. The model includes the effects of isotropic and kinematic hardening, as well as time-dependent effects, and has been used to model the cyclic material behaviour of each material. Material constants were initially determined from initial cycle stress–strain data, maximum stress evolution data and stress relaxation data. The material constants were improved by use of a least-squares optimisation algorithm. The constitutive models have been implemented into the ABAQUS finite element (FE) code by using the Z-mat software. The performances of the material models for both steels have been assessed by comparing predictions with experimental data obtained from the tests

    Physicochemical analysis of rotavirus segment 11 supports a 'modified panhandle' structure and not the predicted alternative tRNA-like structure (TRLS)

    Get PDF
    .Rotaviruses are a major cause of acute gastroenteritis, which is often fatal in infants. The viral genome consists of 11 double-stranded RNA segments, but little is known about their cis-acting sequences and structural elements. Covariation studies and phylogenetic analysis exploring the potential structure of RNA11 of rotaviruses suggested that, besides the previously predicted "modified panhandle" structure, the 5' and 3' termini of one of the isoforms of the bovine rotavirus UKtc strain may interact to form a tRNA-like structure (TRLS). Such TRLSs have been identified in RNAs of plant viruses, where they are important for enhancing replication and packaging. However, using tRNA mimicry assays (in vitro aminoacylation and 3'- adenylation), we found no biochemical evidence for tRNA-like functions of RNA11. Capping, synthetic 3' adenylation and manipulation of divalent cation concentrations did not change this finding. NMR studies on a 5'- and 3'-deletion construct of RNA11 containing the putative intra-strand complementary sequences supported a predominant panhandle structure and did not conform to a cloverleaf fold despite the strong evidence for a predicted structure in this conserved region of the viral RNA. Additional viral or cellular factors may be needed to stabilise it into a form with tRNA-like properties

    Assessing the Utility of Thermodynamic Features for microRNA Target Prediction under Relaxed Seed and No Conservation Requirements

    Get PDF
    BACKGROUND: Many computational microRNA target prediction tools are focused on several key features, including complementarity to 5'seed of miRNAs and evolutionary conservation. While these features allow for successful target identification, not all miRNA target sites are conserved and adhere to canonical seed complementarity. Several studies have propagated the use of energy features of mRNA:miRNA duplexes as an alternative feature. However, different independent evaluations reported conflicting results on the reliability of energy-based predictions. Here, we reassess the usefulness of energy features for mammalian target prediction, aiming to relax or eliminate the need for perfect seed matches and conservation requirement. METHODOLOGY/PRINCIPAL FINDINGS: We detect significant differences of energy features at experimentally supported human miRNA target sites and at genome-wide sites of AGO protein interaction. This trend is confirmed on datasets that assay the effect of miRNAs on mRNA and protein expression changes, and a simple linear regression model leads to significant correlation of predicted versus observed expression change. Compared to 6-mer seed matches as baseline, application of our energy-based model leads to ∼3-5-fold enrichment on highly down-regulated targets, and allows for prediction of strictly imperfect targets with enrichment above baseline. CONCLUSIONS/SIGNIFICANCE: In conclusion, our results indicate significant promise for energy-based miRNA target prediction that includes a broader range of targets without having to use conservation or impose stringent seed match rules

    ViennaRNA Package 2.0

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary structure forms an important intermediate level of description of nucleic acids that encapsulates the dominating part of the folding energy, is often well conserved in evolution, and is routinely used as a basis to explain experimental findings. Based on carefully measured thermodynamic parameters, exact dynamic programming algorithms can be used to compute ground states, base pairing probabilities, as well as thermodynamic properties.</p> <p>Results</p> <p>The <monospace>ViennaRNA</monospace> Package has been a widely used compilation of RNA secondary structure related computer programs for nearly two decades. Major changes in the structure of the standard energy model, the <it>Turner 2004 </it>parameters, the pervasive use of multi-core CPUs, and an increasing number of algorithmic variants prompted a major technical overhaul of both the underlying <monospace>RNAlib</monospace> and the interactive user programs. New features include an expanded repertoire of tools to assess RNA-RNA interactions and restricted ensembles of structures, additional output information such as <it>centroid </it>structures and <it>maximum expected accuracy </it>structures derived from base pairing probabilities, or <it>z</it>-<it>scores </it>for locally stable secondary structures, and support for input in <monospace>fasta</monospace> format. Updates were implemented without compromising the computational efficiency of the core algorithms and ensuring compatibility with earlier versions.</p> <p>Conclusions</p> <p>The <monospace>ViennaRNA Package 2.0</monospace>, supporting concurrent computations <monospace>via OpenMP</monospace>, can be downloaded from <url>http://www.tbi.univie.ac.at/RNA</url>.</p
    corecore