140 research outputs found

    The Thermal Renormalization Group for Fermions, Universality, and the Chiral Phase-Transition

    Get PDF
    We formulate the thermal renormalization group, an implementation of the Wilsonian RG in the real-time (CTP) formulation of finite temperature field theory, for fermionic fields. Using a model with scalar and fermionic degrees of freedom which should describe the two-flavor chiral phase-transition, we discuss the mechanism behind fermion decoupling and universality at second order transitions. It turns out that an effective mass-like term in the fermion propagator which is due to thermal fluctuations and does not break chiral symmetry is necessary for fermion decoupling to work. This situation is in contrast to the high-temperature limit, where the dominance of scalar over fermionic degrees of freedom is due to the different behavior of the distribution functions. The mass-like contribution is the leading thermal effect in the fermionic sector and is missed if a derivative expansion of the fermionic propagator is performed. We also discuss results on the phase-transition of the model considered where we find good agreement with results from other methods.Comment: References added, minor typos correcte

    Abelian versus Non-Abelian Higgs Model in Three Dimensions

    Get PDF
    We study the phase structure of the abelian Higgs model in three dimensions based on perturbation theory and a set of gauge independent gap equations for Higgs boson and vector boson masses. Contrary to the non-abelian Higgs model, the vector boson mass vanishes in the symmetric phase. In the Higgs phase the gap equations yield masses consistent with perturbation theory. The phase transition is first-order for small values of the scalar self-coupling λ\lambda, where the employed loop expansion is applicable.Comment: 8 pages Latex, 4 figures in separate uu-fil

    Magnetic Screening in the High Temperature Phase of the Standard Model

    Full text link
    Non-perturbative effects in the high-temperature phase of the electroweak theory are characterized by a magnetic screening length. Its size influences the range of validity of perturbation theory, and it also determines the critical Higgs boson mass where the first-order phase transition changes to a crossover. We propose a gauge-invariant definition of the magnetic screening length and discuss its role in several gauge-dependent and gauge-invariant correlation functions.Comment: 11 pages Latex, 3 figures, uses epsf.st

    Heisenberg frustrated magnets: a nonperturbative approach

    Full text link
    Frustrated magnets are a notorious example where the usual perturbative methods are in conflict. Using a nonperturbative Wilson-like approach, we get a coherent picture of the physics of Heisenberg frustrated magnets everywhere between d=2d=2 and d=4d=4. We recover all known perturbative results in a single framework and find the transition to be weakly first order in d=3d=3. We compute effective exponents in good agreement with numerical and experimental data.Comment: 5 pages, Revtex, technical details available at http://www.lpthe.jussieu.fr/~tissie

    Critical Behavior of the Meissner Transition in the Lattice London Superconductor

    Full text link
    We carry out Monte Carlo simulations of the three dimensional (3D) lattice London superconductor in zero applied magnetic field, making a detailed finite size scaling analysis of the Meissner transition. We find that the magnetic penetration length \lambda, and the correlation length \xi, scale as \lambda ~ \xi ~ |t|^{-\nu}, with \nu = 0.66 \pm 0.03, consistent with ordinary 3D XY universality, \nu_XY ~ 2/3. Our results confirm the anomalous scaling dimension of magnetic field correlations at T_c.Comment: 4 pages, 5 ps figure

    Critical Phenomena with Linked Cluster Expansions in a Finite Volume

    Full text link
    Linked cluster expansions are generalized from an infinite to a finite volume. They are performed to 20th order in the expansion parameter to approach the critical region from the symmetric phase. A new criterion is proposed to distinguish 1st from 2nd order transitions within a finite size scaling analysis. The criterion applies also to other methods for investigating the phase structure such as Monte Carlo simulations. Our computational tools are illustrated at the example of scalar O(N) models with four and six-point couplings for N=1N=1 and N=4N=4 in three dimensions. It is shown how to localize the tricritical line in these models. We indicate some further applications of our methods to the electroweak transition as well as to models for superconductivity.Comment: 36 pages, latex2e, 7 eps figures included, uuencoded, gzipped and tarred tex file hdth9607.te

    Masses and Phase Structure in the Ginzburg-Landau Model

    Get PDF
    We study numerically the phase structure of the Ginzburg-Landau model, with particular emphasis on mass measurements. There is no local gauge invariant order parameter, but we find that there is a phase transition characterized by a vanishing photon mass. For type I superconductors the transition is of 1st order. For type II 1st order is excluded by susceptibility analysis, but the photon correlation length suggests 2nd order critical behaviour with \nu ~ 1/2. The scalar mass, in contrast, does not show clear critical behaviour in the type II regime for V \to \infty, contrary to the conventional picture.Comment: 16 pages, 6 figures. More data gathered, allowing more definite conclusion

    Spatial distribution of photoelectrons participating in formation of x-ray absorption spectra

    Full text link
    Interpretation of x-ray absorption near-edge structure (XANES) experiments is often done via analyzing the role of particular atoms in the formation of specific peaks in the calculated spectrum. Typically, this is achieved by calculating the spectrum for a series of trial structures where various atoms are moved and/or removed. A more quantitative approach is presented here, based on comparing the probabilities that a XANES photoelectron of a given energy can be found near particular atoms. Such a photoelectron probability density can be consistently defined as a sum over squares of wave functions which describe participating photoelectron diffraction processes, weighted by their normalized cross sections. A fine structure in the energy dependence of these probabilities can be extracted and compared to XANES spectrum. As an illustration of this novel technique, we analyze the photoelectron probability density at the Ti K pre-edge of TiS2 and at the Ti K-edge of rutile TiO2.Comment: Journal abstract available on-line at http://link.aps.org/abstract/PRB/v65/e20511

    QED_3 theory of underdoped high temperature superconductors II: the quantum critical point

    Full text link
    We study the effect of gapless quasiparticles in a d-wave superconductor on the T=0 end point of the Kosterlitz-Thouless transition line in underdoped high-temperature superconductors. Starting from a lattice model that has gapless fermions coupled to 3D XY phase fluctuations of the superconducting order parameter, we propose a continuum field theory to describe the quantum phase transition between the d-wave superconductor and the spin-density-wave insulator. Without fermions the theory reduces to the standard Higgs scalar electrodynamics (HSE), which is known to have the critical point in the inverted XY universality class. Extending the renormalization group calculation for the HSE to include the coupling to fermions, we find that the qualitative effect of fermions is to increase the portion of the space of coupling constants where the transition is discontinuous. The critical exponents at the stable fixed point vary continuously with the number of fermion fields NN, and we estimate the correlation length exponent (nu = 0.65) and the vortex field anomalous dimension(eta_Phi=-0.48) at the quantum critical point for the physical case N=2. The stable critical point in the theory disappears for the number of Dirac fermions N > N_c, with N_c ~ 3.4 in our approximation. We discuss the relationship between the superconducting and the chiral (SDW) transitions, and point to some interesting parallels between our theory and the Thirring model.Comment: 13 pages including figures in tex

    Phase Structure and Phase Transition of the SU(2) Higgs Model in Three Dimensions

    Get PDF
    We derive a set of gauge independent gap equations for Higgs boson and vector boson masses for the SU(2) Higgs model in three dimensions. The solutions can be associated with the Higgs phase and the symmetric phase, respectively. In the Higgs phase the calculated masses are in agreement with results from perturbation theory. In the symmetric phase a non-perturbative vector boson mass is generated by the non-abelian gauge interactions, whose value is rather independent of the scalar self-coupling λ\lambda. For small values of λ\lambda the phase transition is first-order. Its strength decreases with increasing λ\lambda, and at a critical value λc\lambda_c the first-order transition changes to a crossover. Based on a perturbative matching the three-dimensional theory is related to the four-dimensional theory at high temperatures. The critical Higgs mass mHcm_H^c, corresponding to the critical coupling λc\lambda_c, is estimated to be below 100 GeV. The ``symmetric phase'' of the theory can be interpreted as a Higgs phase whose parameters are determined non-perturbatively. The obtained Higgs boson and vector boson masses are compared with recent results from lattice Monte Carlo simulations.Comment: 22 pages Latex, 9 figures as uuencoded EPS files. Figure 9 replaced, no changes in the tex
    corecore