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Masses and phase structure in the Ginzburg-Landau model
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We study numerically the phase structure of the Ginzburg-Landau model, with particular emphasis on mass
measurements. There is no local gauge-invariant order parameter, but we find that there is a phase transition
characterized by a vanishing photon mass. For type-l superconductors the transition is of first order. For
type-Il, a first-order transition is excluded by susceptibility analysis, but the photon correlation length is
compatible with second-order critical behavior with- 3. The scalar mass, in contrast, does not show clear
critical behavior in the type-ll regime forV—o, contrary to the conventional picture.
[S0163-18298)04205-2

[. INTRODUCTION clusions based on a series of finite lattices can never be quite
complete, we nevertheless find indications of quite an unex-
One of the most interesting phase transitions known igected pattern in the type-Il regime. We also point out direc-
that some materials become superconductive at low temper&ons for future investigations of this issue.
tures. While the microscopic dynamics behind the phenom- The paper is organized as follows. In Sec. Il we specify
enon is complicated, there exists a simple effective theory fofhe model studied, in Sec. Ill we discuss how it is dis-
describing this transition. The effective theory is just thecretized, and in Sec. IV how the simulations are organized
Ginzburg-LandauGL) model, or a three-dimensional(1J and what our results are. Section V is a discussion.
+ complex scalar gauge theory. The modulus squared of the
scalar field represents the density of superconductive elec- Il. THE MODEL
trons. The GL model might have other applications as well, i i ) )
such as the nematic-to-smectic-A transition in liquid Let us f|r§t define the.modell unamblgl_Joust. Itis alocally
crystalst gauge-mvangnt three-dlme_nsmnal contlnuu_r(illJJr' com-
There exists an extensive literature on the phase diagraf€x scalar field theory defined by the functional integral
of the GL modef~’ Defining the standard GL parameter as
x=m2/2m3, (where my is the inverse scalar correlation Z:f DAD exd — (A, )], (1)
length, or coherence length, amad,, is the inverse vector
correlation length, or penetration depththe conventional
picture is that the transition is of first order for small S:f d3x
(type-I superconductoysgets weaker with increasing has
a tricritical point at somex., and remains of second order
for x>x, _(type—ll superf:on.ductoyé* This pictu.re is ba§ed on + m§¢* b+ N3(d* )2
perturbative, renormalization-group and lattice studies, often
in a dual theory. These studies have nevertheless not be . 2 . . . .
conclusive and there have been arguments concerning, f rhe couplingses A 3 have the dimension of magi units
instance, the universality class of the provisional second- —c= 1) and, factoring out one scale@, the fr_ee-en(_argy
order transition in the type-II regimext 1/2) 7 densnyf of the model depends on the two dimensionless
The purpose of this paper is to study the phase diagrafftiS
numerically. We improve significantly upon earlier numeri-
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cal results;* by having a much finer latticésmaller lattice _m - As 3
constanta in physical unit$ and by measuring the different y= eg ' n e%’

correlation lengths. While the infinite volume and continuum
extrapolations are numerically demanding and thus the corso that
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Z=exd - VeSf(y,x)]. (4)
The phase diagram of the theory can thus be drawn in the
(x,y) plane.
Since the theory in Eq(2) is a continuum field theory, Lst order Photon mass = 07
one has to consider ultraviolet renormalization. There is a my, m,
linear one-loop and logarithmic two-loop divergetcéor N
the mass parameteng. In the MSdimensional regulariza- ’
tion scheme in 3-2¢ dimensions, the renormalized mass
parameter becom¥s
Photon mass nonzero ~.
—4e3+80,e2—8)\2 A gy T e
mi(p)= —— 7 ——n—", (5)
s 16 7
whereA ,, specifies the theory. To be more precise, we thus x=0.0463 X, x=2
definey=m3(e2)/ej, which specifies the continuum theory I \ I
at the full quantum level equally well as,,. i
The physical values of andy depend on the microscopic FIG. 1. The qualitative phase diagram of the GL theory.
theory behind the effective theory in E). For reference,
for usual superconductors in the notation of Ref. 5, call the regiony>y.(x) the normal and the regioty
<y(Xx) the superconductingSC) phase. At smalk the re-
1(7T g 0.01 liability of perturbation theory has been verified
y= rq_4(-|-_c_1)’ X= (rq_)2~ r_z (6) numerically® However, perturbation theory gets worse at
largex and the issue now is what happens then.
with g~107%, g~0.01,r<1. For highT, superconductors
x can be>1. At present we consider the thed) as such IIl. DISCRETIZATION
and questions of validity, like the need to includé*(¢)®
terms, do not enter. To latticize @ = lattice spacingthe theory with the fixed
The phase diagram of the GL model on th&>0 plane  continuum variables,y, we introduce the link fieldJ;(x)
(see Fig. 1 contains a curvg=y.(x) along which the sys- =exfiaeA(x)]=exdia(x)]. Relating the counterterms in

tem has a first-order transition for small To one vector the MSand lattice regularization schem¥éghe lattice action
loop this curve is simply given by.=1/(187x). We shall become¥®

- R 3.175911%1+2
S=po 2 [1-coF;(0]~ fu Re¢*<x>ui<x>¢(x+i>+%§ ¢* (X) b(x) 6+—yg— ke

X< 2mBg
(—4+8x—8x%)(In6Bg+0.09+25.5+4.6<] xBY
—_ + * 2’ 7
167252 apg> (4" (09(0)] v
|
where 8y, is so far arbitraryﬁezlleéa, and consider a system with a typical correlation lengthThen
. ) . one has to satisfyon a periodic latticea<<é<Na/2 or, in
Fij ()= ai(X) + aj(X+1) = aj(x+]) — aj(X). (8)  physical units,
We have scaled the continuum scalar field to a dimensionless 1 N
lattice field by ¢* p— By d* ¢/2a, but further rescalingéy la= — <eli< 9)

a specific choice oBy) are possible; we thus scale the co- Bc 2B

efficient of ¢* ¢ to be +1. For a given continuum theory

(€2,y,x), Egs.(7),(8) specify up to terms of ordez2a the ~ We observe thae3é~1 and takeBg=4,6 so that 18¢

corresponding lattice action. It should be noted that the com<e3¢; andN=32, . .. 64 sahat N/(235)>e5¢. Note that

plicated counterterm expression in the square brackets in ERRef. 4 hadB;=0.2,N<15, so that the lattice spacirgwas

(7) only affects the value of . for givenx [the counterterm larger than the typical correlation lengths.

guarantees that the limjt.(a— 0) existg, but not the quali- Apart from the UV-cutoff effects discussed, there is an-

tative structure of the phase diagram. other effect related to a finita. Indeed, we use a compact
One of the most essential points of the present latticdormulation for the W1) gauge field, which changes the to-

simulations is the extrapolation to the continuum limit: first pology of the theory and implies that the photon becomes

the infinite volumeV— at fixed lattice spacing, then  massive'® However, a semiclassical computation for this

a—0. To estimate the required sizes 6f=(Na)® anda, Polyakov mass givé$
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=6 (or a smooth crossovecannot be excluded based on these
- measurements. We thus turn to masses.
- 'X=g-°463 For the mass measurements we use the scalar operator
10° - = E ¢* ¢ and the two vector operatogs* D¢ and € Fj. On
o the lattice these are
-
10" % / 4 O(X)= ¢* (x) p(x), (12
Y Oi(x) =Img* ) U;(X) p(x+1), (13
£ .3
10° ¢ < _ .
Oi(X):fiij|nij(X). (14)
\ The correlation masses are measuffedm a lattice of size
0 F = o . - 1 N2N,) by first summing over planes, possibly with momen-
tum p=2x/(aN,),
101 | I .
10 100 , 1000 10000 o(z;p)zz e'PXO(x,y,2), (15)
Volume*e, Xy

FIG. 2. The maximum of the susceptibilily as a function of ~and then studying the largebehavior of
volume. The straight line is-V.

G(tip)= o 2 (O(zP)O*(z+tip)). (16
m} 9 3.176m x\z 2
— =7(2Bc)>%exy — 2 Pol-

2
€3

(10

The momentum is needed for the correlatorQy, used to
measure the photon magsit can also be used for the very
Thus for ;=4 this photon mas¢as well as the monopole |ight scalar mass, to get a better signal in a finite volume
der;sn%/ from which it originatés should bg negligible without the factore®* in Eq. (15), the plane average f(@g
(m,/e3<0.01) and our results the same as in the NONCOMy, 4 simply vanish. In perturbation theory, one finds for
pact formulation within statistical errors. the asymptotic behavior of this correlator in the continuum

limit,
IV. SIMULATIONS AND RESULTS
- - A, ap® 2_ 121 2
For the simulations we choose two values xf x Gg(t)=—Ee , E“=p°+mj, a7
=0.0463 andx=2, corresponding to strongly type-l and Be

type-II superconductors. We then measure averages of localherem, =0 in the normal phase. At the one-loop level for
or bilocal gauge-invariant quantities and locate the criticaly>0,
curvey=y(x) on which the system changes its properties.

Note that there is no local gauge-invariant order parameter 1
which would vanish in either of the phases. However, we A,=1- N (18)
shall find that the photon mass, measured from a correlator, 24y
vanishes in one of the phases within errors. Very close to the critical poiny~0 the expansion foA,

The phase transition is located by finding the maximum inthus breaks down, and the form of the correlation function is
y of the susceptibilityy defined by determined by an anomalous dimension. For our datapoints,

the functional form in Eq(17) fits the data well and the
X=e§V((¢* d—{(d* $))?), (11) energyE is measured from the exponential falloff. The mass
- - is then obtained fronm= JE?— p?.

where ¢* ¢ is the volume averagep* ¢=V~*[d*x¢* ¢, To improve the projection to the low-lying mass states, it

and by studying its large- behavior:® I there is a first-order s indispensabf to use blocking techniquésto define ex-
transition, the distribution of* ¢ precisely aty.(x) hastwo  tended operators, and to make a mixing anafydietween
peaks which remain at fixed distance and get narrower wheaperators at different blocking levels, to search for the linear
V—o. Then the maximum of grows as the volum¥. Ina  combination giving the best signal. We find the best results
second-order transition the expected behavior 8, « be-  with blocking level 3 for the scalar mass. The mixing analy-
ing a critical exponent. lfy~VP, then eitherx<0, or the sis allows us to get a good signal already at a relatively small
transition is of higher than second order or absent. t, t~(2—5)a. We denote bym, the lowest-lying vector
The susceptibility maximum is plotted in Fig. 2. One seesstate, and byny, the first excitation(where it can be deter-
a very clear difference between=0.0463 andx=2. The mined.
behavior of the system at=0.0463 at the largest volumes  The masses=1/¢) near the transition are shown in Fig.
indicates a linear first-order behavior. A=2, in contrast, 3. For type-l superconductors £ 0.0463) one observes in
the transition is not of first order. If the transition is of sec-the SC phase one scalar with a rather small nmags The
ond order the critical exponenrt is close to zero, as noticed vector operators couple dominantly to a single state of a
already in Refs. 3,4. However, a still higher-order transitionlarger massn,,=m,,. These are the standafihverse co-
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O T FIG. 4. A magnification of the region around the critical point
18 - o ] for x=2. The dashed curve is a fit with a free exponent over the
16 | Dm:v/{ rangey=—0.25...0.0, and givesr=0.39(17). The solid curves
1al om ] are withv=3, and with a constant fom, (see Fig. 5.
12 [ b . . . . .
ol 1 the other hand, it should be noted that a discontinuitynin
e cannot be excluded eitheThe dashed curve in Fig. 3 shows
£ 08¢ ] the fitm, /e5=A(y.—y)" over the wholey range, whereA
06 ¢ ] =0.952), y.=—0.0466), v=0.442). For thelower solid
04t 8 curve v has been fixed ta=3. In Fig. 4 (for a smallery
02 | ] range, »=0.39(17). The behavior ah, is thus consistent
T with a mean-field exponent.
0.0 o . .
As to my, it is seen that it deviates from,, already
O e e e e e e o oS below the critical point, unlike in the first-order case shown
§-S8 xRN @8Bdypwmd T gnan 3 in the top panel of Fig. 3. This might indicate that the tran-
TTT99TITTTTCCC s

sition line has split into several transitions in the type-Il re-

FIG. 3. The masses at=0.0463(top) andx=2 (bottom). Note ~ 9ime. Howeverm,, is an excited state and thus there are
the discontinuous and continuous behaviomaf in the top and ~ SOMe Systematic errors in its determination which may be
bottom figures, respectively. The valuesmf in the top figure for ~ larger than the statistical errors shown in the figure.
y=0.12,0.14 are? . .. 3standard deviations from zero, but all or ~ Consider then the scalar masy,. First, note that the
most of this deviation is expected to be due to the absence of €ata in Fig. 4 indicated that its minimum is at a point differ-
mixing analysis at these data points. The curves in the bottom figurent from wherem,, goes to zero, assuming tine, behaves
represent fits~Aly—y.|". The dashed curve fan, is with a free  continuously. The other possibility is that, jumps to zero
exponentr=0.44(2) over the wholg range whereas for the solid at the point wherem, is at a minimum. Secondny dips
curves,v has been fixed to=3. steeply in Fig. 3, but does not go to zero as can be seen in

_ ~ Fig. 4. On a finite(periodig lattice with spatial extension
herence length and penetration depth. Close to the transitian=Na one cannot expect to see scalar mass values smaller

point one can observe both phases simultaneously, and thigan ~ 2/L. However, according to Fig. 5 the scalar mass is
masses are discontinuous. Above the transition the scalar eprger than this value and does not show the corresponding
citation is there with a larger mass, but the vector operatorgolume dependence. In factny is volume independent
couple to two quite different states. There ighd¢ bound  within error bars at the minimum.
state of large massy,, seen dominantly by the operat@y, The question remaining then is whether the scalar mass
while the operato©; sees the photon of mass, which is  depends on the lattice spaciag This seems unlikely, since
consistent with zero within . The picture here is the stan- the lattice spacing we used is much smaller than the correla-
dard one of a first-order transition with,, as an effective tion Iength,e%az 1/B8g= 1/4<e§§H=e§/mH~2, so that one
order parameter. does not expect large effects from removing the UV cutoff.
For type-Il superconductorx €& 2) a first-order transition Indeed, we have made simulations wg=3 andB;=6 at
was excluded by the susceptibility analysis: no two-pealka few points around the minimum, and we do not find any
structure exists. However, Fig. 3 shows that thersdme appreciable lattice spacing dependence. It should be pointed
transition since in the normal phase,=0 within errors.  out, though, that fo3s=6 one should go te-50% larger
The critical region is shown in a magnified form in Fig. 4, lattice sizesN to get physical volumes comparable with
and one can see that, could go to zero continuouslfon  those forBs=4, according to Eq(9).
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X=2, fo=4 As to the critical exponents of the transition, we have

' measured the finite-size scaling susceptibility exponent de-
fined after Eq(11) to be consistent with zero, and the photon
correlation length exponent in the SC phase to be consistent
with 3. We have not measured the anomalous dimension

of the photon correlation lengtiO5(x) O5(0))~ 1/x|** 74,

but in principle it could be measured with a significantly
extended analysis, if the transition is really of second order
[ 7a would show up in the functional form of E¢L7)]. If the
transition were of second order in the usual sense, then one
could also measure the scalar correlation length critical ex-

ponentsy, v’ in the two phasesmy~|y—y”" , and the
corresponding anomalous dimensioryat However, as we
have not seen any critical behavior for the scalar correlation
length, these exponents cannot be systematically measured.
It seems that away from the critical pointyy shows ap-

proximate scaling where, v’ are consistent with, see Fig.
5.

-0.2500 F
-0.2375 |
-0.2250 F
-0.2125 |
0.0000 F
0.0125 |

A more conclusive study of the infinite volume and con-
FIG. 5. The volume dependence of the scalar mass. The resultthuum limits in the type-Il regime would clearly be needed.

are consistent within error bars at the minimum. The expected CfitiUnfortunater this limit is numerically very demanding and
cal scaling behavior is shown with the horizontal lines indicatingrequires much more extensive further simulations. Based on

the value of 2L. No such scaling is observed. The fits are of thethe present investigation, we can nevertheless point out that
form my/e3~[A’(y.—y)"“+B] (Y<Vo), [A(y—yo)"“+B] (y

: it would probably be more economic to use the noncompact
>Yo), With A’~1.1, A~1.7. lattice action than the compact one we have used here. The
. . reason is that one can then take a large lattice spacing
Note also that as long @70 there is in a strict Sens®  sa1er 8 ) in order to get a larger physical volume, with-
phase transition due to the Polyakov mass. However, thg; haying to worry about the nonzero value of the Polyakov
Polyakov mass in Eq10) is very small forB;=4, so that

Foya mass.
its finite value should have no effect. As a final observation, let us note that one might expect
the study of a gauge theory with a(1) gauge group to be
V. DISCUSSION

simpler than that with a more complicated group such as

We have seen that in the type-ll regime, the data areY(2) (Refs. 9,10 or SU2)x U(1)2 In fact, this turns out
consistent with a second-order phase transition driven by 50t 10 be the case: @) is numerically more demanding and
diverging photon correlation length. In contrast, the scalaf€duires larger latticet least in the compact formulatipn
mass shows quite unexpected behavior. It appearsnthat The eX|stence'of a massless photon is not as such thfe only
has a minimum away from where the photon correlation€ason: there is a photon also in @< U(1), but there it
length divergesiassuming tham,, behaves continuously exists in both phases and is not an order parameter.
and thatmy does not show critical scaling towards zero ACKNOWLEDGMENTS
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