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Masses and phase structure in the Ginzburg-Landau model
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We study numerically the phase structure of the Ginzburg-Landau model, with particular emphasis on mass
measurements. There is no local gauge-invariant order parameter, but we find that there is a phase transition
characterized by a vanishing photon mass. For type-I superconductors the transition is of first order. For
type-II, a first-order transition is excluded by susceptibility analysis, but the photon correlation length is
compatible with second-order critical behavior withn; 1

2. The scalar mass, in contrast, does not show clear
critical behavior in the type-II regime for V→`, contrary to the conventional picture.
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I. INTRODUCTION

One of the most interesting phase transitions known
that some materials become superconductive at low temp
tures. While the microscopic dynamics behind the pheno
enon is complicated, there exists a simple effective theory
describing this transition. The effective theory is just t
Ginzburg-Landau~GL! model, or a three-dimensional U~1!
1 complex scalar gauge theory. The modulus squared of
scalar field represents the density of superconductive e
trons. The GL model might have other applications as w
such as the nematic-to-smectic-A transition in liqu
crystals.1

There exists an extensive literature on the phase diag
of the GL model.2–7 Defining the standard GL parameter
x5mH

2 /2mW
2 ~where mH is the inverse scalar correlatio

length, or coherence length, andmW is the inverse vector
correlation length, or penetration depth!, the conventional
picture is that the transition is of first order for smallx
~type-I superconductors!, gets weaker with increasingx, has
a tricritical point at somexc , and remains of second orde
for x.xc ~type-II superconductors!.8 This picture is based on
perturbative, renormalization-group and lattice studies, o
in a dual theory. These studies have nevertheless not
conclusive and there have been arguments concerning
instance, the universality class of the provisional seco
order transition in the type-II regime (x.1/2).7

The purpose of this paper is to study the phase diag
numerically. We improve significantly upon earlier nume
cal results,3,4 by having a much finer lattice~smaller lattice
constanta in physical units! and by measuring the differen
correlation lengths. While the infinite volume and continuu
extrapolations are numerically demanding and thus the c
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clusions based on a series of finite lattices can never be q
complete, we nevertheless find indications of quite an un
pected pattern in the type-II regime. We also point out dir
tions for future investigations of this issue.

The paper is organized as follows. In Sec. II we spec
the model studied, in Sec. III we discuss how it is d
cretized, and in Sec. IV how the simulations are organiz
and what our results are. Section V is a discussion.

II. THE MODEL

Let us first define the model unambiguously. It is a loca
gauge-invariant three-dimensional continuum U~1! 1 com-
plex scalar field theory defined by the functional integral

Z5E DAiDf exp@2S~Ai ,f!#, ~1!

S5E d3xF1

4
~] iAj2] jAi !

21u~] i1 ie3Ai !fu2

1m3
2f* f1l3~f* f!2G . ~2!

The couplingse3
2 ,l3 have the dimension of mass~in units

\5c51) and, factoring out one scale (e3
2), the free-energy

density f of the model depends on the two dimensionle
ratios

y[
m3

2

e3
4

, x[
l3

e3
2

, ~3!

so that
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Z5exp@2Ve3
6f ~y,x!#. ~4!

The phase diagram of the theory can thus be drawn in
(x,y) plane.

Since the theory in Eq.~2! is a continuum field theory
one has to consider ultraviolet renormalization. There i
linear one-loop and logarithmic two-loop divergence11 for
the mass parameterm3

2. In the MS̄ dimensional regulariza
tion scheme in 322e dimensions, the renormalized ma
parameter becomes12

m3
2~m!5

24e3
418l3e3

228l3
2

16p2 ln
Lm

m
, ~5!

whereLm specifies the theory. To be more precise, we th
definey[m3

2(e3
2)/e3

4, which specifies the continuum theor
at the full quantum level equally well asLm .

The physical values ofx andy depend on the microscopi
theory behind the effective theory in Eq.~2!. For reference,
for usual superconductors in the notation of Ref. 5,

y5
1

rq4S T

Tc
21D , x5

g

~rq !2 ;
0.01

r 2
, ~6!

with g;1026, q;0.01, r<1. For high-Tc superconductors
x can be@1. At present we consider the theory~2! as such
and questions of validity, like the need to include (f* f)3

terms, do not enter.
The phase diagram of the GL model on they,x.0 plane

~see Fig. 1! contains a curvey5yc(x) along which the sys-
tem has a first-order transition for smallx. To one vector
loop this curve is simply given byyc51/(18p2x). We shall
le

o-
y

m
E

tic
st
e

a

s

call the region y.yc(x) the normal and the regiony
,yc(x) the superconducting~SC! phase. At smallx the re-
liability of perturbation theory has been verifie
numerically.13 However, perturbation theory gets worse
largex and the issue now is what happens then.

III. DISCRETIZATION

To latticize (a 5 lattice spacing! the theory with the fixed
continuum variablesx,y, we introduce the link fieldUi(x)
5exp@iae3Ai(x)#[exp@iai(x)#. Relating the counterterms in
the MS̄and lattice regularization schemes,14 the lattice action
becomes15

FIG. 1. The qualitative phase diagram of the GL theory.
S5bG (
x,i , j

@12cosF̂ i j ~x!#2bH(
x,i

Ref* ~x!Ui~x!f~x1 î !1
bH

2 (
x

f* ~x!f~x!F61
y

bG
2 2

3.1759115~112x!

2pbG

2
~2418x28x2!~ ln6bG10.09!125.514.6x

16p2bG
2 G1

xbH
2

4bG
(

x
@f* ~x!f~x!#2, ~7!
n-
t
-
es
is
wherebH is so far arbitrary,bG51/e3
2a, and

F̂ i j ~x!5a i~x!1a j~x1 î !2a i~x1 ĵ !2a j~x!. ~8!

We have scaled the continuum scalar field to a dimension
lattice field byf* f→bHf* f/2a, but further rescalings~by
a specific choice ofbH) are possible; we thus scale the c
efficient of f* f to be 11. For a given continuum theor
(e3

2 ,y,x), Eqs. ~7!,~8! specify up to terms of ordere3
2a the

corresponding lattice action. It should be noted that the co
plicated counterterm expression in the square brackets in
~7! only affects the value ofyc for given x @the counterterm
guarantees that the limityc(a→0) exists#, but not the quali-
tative structure of the phase diagram.

One of the most essential points of the present lat
simulations is the extrapolation to the continuum limit: fir
the infinite volumeV→` at fixed lattice spacinga, then
a→0. To estimate the required sizes ofV5(Na)3 and a,
ss

-
q.

e

consider a system with a typical correlation lengthj. Then
one has to satisfy~on a periodic lattice! a!j!Na/2 or, in
physical units,

e3
2a5

1

bG
!e3

2j!
N

2bG
. ~9!

We observe thate3
2j;1 and takebG54,6 so that 1/bG

!e3
2j; andN532, . . . ,64 sothat N/(2bG)@e3

2j. Note that
Ref. 4 hadbG50.2,N<15, so that the lattice spacinga was
larger than the typical correlation lengths.

Apart from the UV-cutoff effects discussed, there is a
other effect related to a finitea. Indeed, we use a compac
formulation for the U~1! gauge field, which changes the to
pology of the theory and implies that the photon becom
massive.16 However, a semiclassical computation for th
Polyakov mass gives17
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mg
P

e3
2

5p~2bG!3/2expF2
3.176p

4
bGG . ~10!

Thus forbG>4 this photon mass~as well as the monopole
density from which it originates! should be negligible
(mg

P/e3
2,0.01) and our results the same as in the nonco

pact formulation within statistical errors.

IV. SIMULATIONS AND RESULTS

For the simulations we choose two values ofx, x
50.0463 andx52, corresponding to strongly type-I an
type-II superconductors. We then measure averages of l
or bilocal gauge-invariant quantities and locate the criti
curvey5yc(x) on which the system changes its properti
Note that there is no local gauge-invariant order param
which would vanish in either of the phases. However,
shall find that the photon mass, measured from a correla
vanishes in one of the phases within errors.

The phase transition is located by finding the maximum
y of the susceptibilityx defined by

x5e3
2V^~f* f̄2^f* f̄&!2&, ~11!

where f* f̄ is the volume average,f* f̄5V21*d3xf* f,
and by studying its large-V behavior.18 If there is a first-order
transition, the distribution off* f̄ precisely atyc(x) has two
peaks which remain at fixed distance and get narrower w
V→`. Then the maximum ofx grows as the volumeV. In a
second-order transition the expected behavior is;Vk, k be-
ing a critical exponent. Ifx;V0, then eitherk<0, or the
transition is of higher than second order or absent.

The susceptibility maximum is plotted in Fig. 2. One se
a very clear difference betweenx50.0463 andx52. The
behavior of the system atx50.0463 at the largest volume
indicates a linear first-order behavior. Atx52, in contrast,
the transition is not of first order. If the transition is of se
ond order the critical exponentk is close to zero, as notice
already in Refs. 3,4. However, a still higher-order transit

FIG. 2. The maximum of the susceptibilityx as a function of
volume. The straight line is;V.
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~or a smooth crossover! cannot be excluded based on the
measurements. We thus turn to masses.

For the mass measurements we use the scalar ope
f* f and the two vector operatorsf* Dif ande i jkF jk . On
the lattice these are

O~x!5f* ~x!f~x!, ~12!

Oi~x!5Imf* ~x!Ui~x!f~x1 î !, ~13!

Õi~x!5e i jksinF̂ jk~x!. ~14!

The correlation masses are measured~from a lattice of size
Nx

2Nz) by first summing over planes, possibly with mome
tum p52p/(aNx),

O~z;p!5(
x,y

eipxO~x,y,z!, ~15!

and then studying the large-t behavior of

G~ t;p!5
1

Nx
2Nz

(
z

^O~z;p!O* ~z1t;p!&. ~16!

The momentum is needed for the correlator ofÕ3, used to
measure the photon mass19 ~it can also be used for the ver
light scalar mass, to get a better signal in a finite volum!:
without the factoreipx in Eq. ~15!, the plane average forÕ3
would simply vanish. In perturbation theory, one finds f
the asymptotic behavior of this correlator in the continuu
limit,

G3~ t !5
Ag

bG

ap2

2E
e2Et, E25p21mg

2 , ~17!

wheremg50 in the normal phase. At the one-loop level f
y.0,

Ag512
1

24pAy
. ~18!

Very close to the critical pointy;0 the expansion forAg
thus breaks down, and the form of the correlation function
determined by an anomalous dimension. For our datapo
the functional form in Eq.~17! fits the data well and the
energyE is measured from the exponential falloff. The ma
is then obtained fromm5AE22p2.

To improve the projection to the low-lying mass states
is indispensable20 to use blocking techniques22 to define ex-
tended operators, and to make a mixing analysis22 between
operators at different blocking levels, to search for the lin
combination giving the best signal. We find the best resu
with blocking level 3 for the scalar mass. The mixing ana
sis allows us to get a good signal already at a relatively sm
t, t;(225)a. We denote bymg the lowest-lying vector
state, and bymW the first excitation~where it can be deter
mined!.

The masses (51/j) near the transition are shown in Fig
3. For type-I superconductors (x50.0463) one observes in
the SC phase one scalar with a rather small massmH . The
vector operators couple dominantly to a single state o
larger massmW5mg . These are the standard~inverse! co-
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herence length and penetration depth. Close to the trans
point one can observe both phases simultaneously, and
masses are discontinuous. Above the transition the scala
citation is there with a larger mass, but the vector opera
couple to two quite different states. There is af* f bound
state of large massmW , seen dominantly by the operatorOi ,
while the operatorÕ3 sees the photon of massmg which is
consistent with zero within 2s. The picture here is the stan
dard one of a first-order transition withmg as an effective
order parameter.

For type-II superconductors (x52) a first-order transition
was excluded by the susceptibility analysis: no two-pe
structure exists. However, Fig. 3 shows that there issome
transition since in the normal phasemg50 within errors.
The critical region is shown in a magnified form in Fig.
and one can see thatmg could go to zero continuously~on

FIG. 3. The masses atx50.0463~top! andx52 ~bottom!. Note
the discontinuous and continuous behavior ofmg in the top and
bottom figures, respectively. The values ofmg in the top figure for
y50.12,0.14 are2 . . . 3 standard deviations from zero, but all o
most of this deviation is expected to be due to the absence
mixing analysis at these data points. The curves in the bottom fig
represent fits;Auy2ycun. The dashed curve formg is with a free
exponentn50.44(2) over the wholey range whereas for the soli
curves,n has been fixed ton5

1
2.
on
the
x-

rs

k

the other hand, it should be noted that a discontinuity inmg
cannot be excluded either!. The dashed curve in Fig. 3 show
the fit mg /e3

25A(yc2y)n over the wholey range, whereA
50.95(2), yc520.046(6), n50.44(2). For thelower solid
curve n has been fixed ton5 1

2. In Fig. 4 ~for a smallery
range!, n50.39(17). The behavior ofmg is thus consistent
with a mean-field exponent.

As to mW , it is seen that it deviates frommg already
below the critical point, unlike in the first-order case show
in the top panel of Fig. 3. This might indicate that the tra
sition line has split into several transitions in the type-II r
gime. However,mW is an excited state and thus there a
some systematic errors in its determination which may
larger than the statistical errors shown in the figure.

Consider then the scalar massmH . First, note that the
data in Fig. 4 indicated that its minimum is at a point diffe
ent from wheremg goes to zero, assuming themg behaves
continuously. The other possibility is thatmg jumps to zero
at the point wheremH is at a minimum. Second,mH dips
steeply in Fig. 3, but does not go to zero as can be see
Fig. 4. On a finite~periodic! lattice with spatial extension
L5Na one cannot expect to see scalar mass values sm
than;2/L. However, according to Fig. 5 the scalar mass
larger than this value and does not show the correspon
volume dependence. In fact,mH is volume independen
within error bars at the minimum.

The question remaining then is whether the scalar m
depends on the lattice spacinga. This seems unlikely, since
the lattice spacing we used is much smaller than the corr
tion length,e3

2a51/bG51/4!e3
2jH5e3

2/mH'2, so that one
does not expect large effects from removing the UV cuto
Indeed, we have made simulations withbG53 andbG56 at
a few points around the minimum, and we do not find a
appreciable lattice spacing dependence. It should be poi
out, though, that forbG56 one should go to;50% larger
lattice sizesN to get physical volumes comparable wi
those forbG54, according to Eq.~9!.

a
re

FIG. 4. A magnification of the region around the critical poi
for x52. The dashed curve is a fit with a free exponent over
rangey520.25 . . .0.0, and givesn50.39(17). The solid curves
are withn5

1
2, and with a constant formH ~see Fig. 5!.
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Note also that as long asaÞ0 there is in a strict senseno
phase transition due to the Polyakov mass. However,
Polyakov mass in Eq.~10! is very small forbG54, so that
its finite value should have no effect.

V. DISCUSSION

We have seen that in the type-II regime, the data
consistent with a second-order phase transition driven b
diverging photon correlation length. In contrast, the sca
mass shows quite unexpected behavior. It appears thatmH
has a minimum away from where the photon correlati
length diverges~assuming thatmg behaves continuously!,
and thatmH does not show critical scaling towards ze
when the volume increases. One can also envisage a sce
in which there is only one critical point at whichmg drops to
zero,mH has its finite minimum and the excited vector sta
mW decouples from the photon. If this pattern remains th
for larger volumes and smaller lattice spacings, then one
to modify the standard picture of the superconducting ph
transition in the type-II regime.

FIG. 5. The volume dependence of the scalar mass. The re
are consistent within error bars at the minimum. The expected c
cal scaling behavior is shown with the horizontal lines indicati
the value of 2/L. No such scaling is observed. The fits are of t
form mH /e3

2;@A8(yc2y)1/21B# (y,yc), @A(y2yc)
1/21B# (y

.yc), with A8;1.1, A;1.7.
he
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As to the critical exponents of the transition, we ha
measured the finite-size scaling susceptibility exponent
fined after Eq.~11! to be consistent with zero, and the photo
correlation length exponent in the SC phase to be consis
with 1

2. We have not measured the anomalous dimensionhA

of the photon correlation length,^Õ3(x)Õ3(0)&;1/uxu11hA,
but in principle it could be measured with a significant
extended analysis, if the transition is really of second or
@hA would show up in the functional form of Eq.~17!#. If the
transition were of second order in the usual sense, then
could also measure the scalar correlation length critical
ponentsn,n8 in the two phases,mH;uy2ycun,n8, and the
corresponding anomalous dimension atyc . However, as we
have not seen any critical behavior for the scalar correlat
length, these exponents cannot be systematically measu
It seems that away from the critical point,mH shows ap-
proximate scaling wheren,n8 are consistent with12, see Fig.
5.

A more conclusive study of the infinite volume and co
tinuum limits in the type-II regime would clearly be neede
Unfortunately this limit is numerically very demanding an
requires much more extensive further simulations. Based
the present investigation, we can nevertheless point out
it would probably be more economic to use the noncomp
lattice action than the compact one we have used here.
reason is that one can then take a large lattice spac
~smallerbG) in order to get a larger physical volume, with
out having to worry about the nonzero value of the Polyak
mass.

As a final observation, let us note that one might exp
the study of a gauge theory with a U~1! gauge group to be
simpler than that with a more complicated group such
SU~2! ~Refs. 9,10! or SU~2!3U~1!.23 In fact, this turns out
not to be the case: U~1! is numerically more demanding an
requires larger lattices~at least in the compact formulation!.
The existence of a massless photon is not as such the
reason: there is a photon also in SU~2!3U~1!, but there it
exists in both phases and is not an order parameter.
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