174 research outputs found

    Absolute properties of the main-sequence eclipsing binary FM Leo

    Get PDF
    First spectroscopic and new photometric observations of the eclipsing binary FM Leo are presented. The main aims were to determine orbital and stellar parameters of two components and their evolutionary stage. First spectroscopic observations of the system were obtained with DDO and PST spectrographs. The results of the orbital solution from radial velocity curves are combined with those derived from the light-curve analysis (ASAS-3 photometry and supplementary observations of eclipses with 1 m and 0.35 m telescopes) to derive orbital and stellar parameters. JKTEBOP, Wilson-Devinney binary modelling codes and a two-dimensional cross-correlation (TODCOR) method were applied for the analysis. We find the masses to be M_1 = 1.318 ±\pm 0.007 and M_2 = 1.287 ±\pm 0.007 M_sun, the radii to be R_1 = 1.648 ±\pm 0.043 and R_2 = 1.511 ±\pm 0.049 R_sun for primary and secondary stars, respectively. The evolutionary stage of the system is briefly discussed by comparing physical parameters with current stellar evolution models. We find the components are located at the main sequence, with an age of about 3 Gyr.Comment: 5 pages, 4 figures, to appear in MNRA

    Spectroscopy of HD 86222 – a quintuple system with an eclipsing component

    Get PDF
    We present spectroscopic and photometric analysis of the quintuple star HD 86222 with an eclipsing component. Until now three visual components A, B, and C of this multiple star were known. Four components in the A/B pair were detected during the examination of the cross correlation functions obtained from the spectra. We noticed that the visual components A and B, separated by , are in fact two binary stars – one eclipsing pair and one spectroscopic system. The pair with higher radial velocity amplitude corresponds to the eclipsing period. Photometric and spectroscopic observations of the eclipsing binary enable us to obtain the Wilson-Devinney model. The masses of this pair are M1 = 1.29 ± 0.09 M⊙ and M2 = 1.33 ± 0.09 M⊙, respectively. The radii, slightly higher than for the main sequence stars, are R1 = 1.35 ± 0.01 R⊙ and R2 = 1.36 ± 0.01 R⊙, respectively. The main parameters of the spectroscopic binary are also estimated, but they must be confirmed by future observations because of the uncertainty of the period. The farthest star named C, is 15 arc seconds from the main A and B components. Assuming that this object is gravitationally connected with the A and B binary pairs, HD 86222 has at least five components

    V440 Per: the longest period overtone Cepheid

    Get PDF
    V440 Per is a Population I Cepheid with the period of 7.57 day and low amplitude, almost sinusoidal light and radial velocity curves. With no reliable data on the 1st harmonic, its pulsation mode identification remained controversial. We obtained a radial velocity curve of V440 Per with our new high precision and high throughput Poznan Spectroscopic Telescope. Our data reach the accuracy of 130 m/s per individual measurement and yield a secure detection of the 1st harmonic with the amplitude of A_2= 140+/- 15 m/s. The velocity Fourier phase \phi_21 of V440 Per is inconsistent at the 7.25 \sigma level with those of the fundamental mode Cepheids, implying that the star must be an overtone Cepheid, as originally proposed by Kienzle et al.(1999). Thus, V440 Per becomes the longest period Cepheid with the securely established overtone pulsations. We show, that the convective nonlinear pulsation hydrocode can reproduce the Fourier parameters of V440 Per very well. Requirement to match the observed properties of V440 Per constrains free parameters of the dynamical convection model used in the pulsation calculations, in particular the radiative losses parameter.Comment: Submitted to MNRA

    Tensile Deformation of Oriented Poly(Δ-caprolactone) and Its Miscible Blends with Poly(vinyl methyl ether)

    Get PDF
    The structural evolution of micromolded poly(Δ-caprolactone) (PCL) and its miscible blends with noncrystallizable poly(vinyl methyl ether) (PVME) at the nanoscale was investigated as a function of deformation ratio and blend composition using in situ synchrotron smallangle X-ray scattering (SAXS) and scanning SAXS techniques. It was found that the deformation mechanism of the oriented samples shows a general scheme for the process of tensile deformation: crystal block slips within the lamellae occur at small deformations followed by a stressinduced fragmentation and recrystallization process along the drawing direction at a critical strain where the average thickness of the crystalline lamellae remains essentially constant during stretching. The value of the critical strain depends on the amount of the amorphous component incorporated in the blends, which could be traced back to the lower modulus of the entangled amorphous phase and, therefore, the reduced network stress acting on the crystallites upon addition of PVME. When stretching beyond the critical strain the slippage of the fibrils (stacks of newly formed lamellae) past each other takes place resulting in a relaxation of stretched interlamellar amorphous chains. Because of deformation-induced introduction of the amorphous PVME into the interfibrillar regions in the highly oriented blends, the interactions between fibrils becomes stronger upon further deformation and thus impeding sliding of the fibrils to some extent leading finally to less contraction of the interlamellar amorphous layers compared to the pure PCLNational Natural Science Foundation of China (21204088 and 21134006). This work is within the framework of the RCUK/EPSRC Science Bridges China project of UK−China Advanced Materials Research Institute (AMRI)

    Polyaniline/palladium nanohybrids for moisture and hydrogen detection.

    Get PDF
    Palladium nanoparticles display fascinating electronic, optical and catalytic properties, thus they can be used for various applications such as sensor fabrication. Conducting polymers such as polyaniline have also been widely used in sensor technology due to its cost effectiveness, versatility, and ease of synthesis. In this research, attention was given to unify the exceptional properties of these two materials and construct palladium nanoparticle coated polyaniline films to detect hydrogen and moisture. Electrochemical polymerization of aniline was carried out on gold sputtered epoxy resin boards. Polyaniline film was generated across a gap of 0.2 mm created by a scratch made on the gold coating prior to electrochemical polymerization. A palladium nanoparticle dispersion was prepared using sonochemical reduction method and coated on to polyaniline film using drop-drying technique. Polyaniline only films were also fabricated for comparative analysis. Sensitivity of films towards humidity and hydrogen was evaluated using impedance spectroscopy in the presence of the respective species. According to the results, polyaniline films exhibited an impedance drop in the presence of humidity and the response was significantly improved once palladium nanoparticles were incorporated. Interestingly, polyaniline only films did not respond to hydrogen. Nevertheless, palladium nanoparticle coated polyaniline films exhibited remarkable response towards hydrogen

    Nucleation and crystallization in bio-based immiscible polyester blends

    Get PDF
    Bio-based thermoplastic polyesters are highly promising materials as they combine interesting thermal and physical properties and in many cases biodegradability. However, sometimes the best property balance can only be achieved by blending in order to improve barrier properties, biodegradability or mechanical properties. Nucleation, crystallization and morphology are key factors that can dominate all these properties in crystallizable biobased polyesters. Therefore, their understanding, prediction and tailoring is essential. In this work, after a brief introduction about immiscible polymer blends, we summarize the crystallization behavior of the most important bio-based (and immiscible) polyester blends, considering examples of double-crystalline components. Even though in some specific blends (e.g., polylactide/polycaprolactone) many efforts have been made to understand the influence of blending on the nucleation, crystallization and morphology of the parent components, there are still many points that have yet to be understood. In the case of other immiscible polyester blends systems, the literature is scarce, opening up opportunities in this environmentally important research topic.The authors would like to acknowledge funding by the BIODEST project ((RISE) H2020-MSCA-RISE-2017-778092

    The large trans-Neptunian object 2002 TC302 from combined stellar occultation, photometry, and astrometry data

    Get PDF
    Context. Deriving physical properties of trans-Neptunian objects is important for the understanding of our Solar System. This requires observational efforts and the development of techniques suitable for these studies. Aims. Our aim is to characterize the large trans-Neptunian object (TNO) 2002 TC302. Methods. Stellar occultations offer unique opportunities to determine key physical properties of TNOs. On 28 January 2018, 2002 TC302 occulted a mv ~ 15.3 star with designation 593-005847 in the UCAC4 stellar catalog, corresponding to Gaia source 130957813463146112. Twelve positive occultation chords were obtained from Italy, France, Slovenia, and Switzerland. Also, four negative detections were obtained near the north and south limbs. This represents the best observed stellar occultation by a TNO other than Pluto in terms of the number of chords published thus far. From the 12 chords, an accurate elliptical fit to the instantaneous projection of the body can be obtained that is compatible with the near misses. Results. The resulting ellipse has major and minor axes of 543 ± 18 km and 460 ± 11 km, respectively, with a position angle of 3 ± 1 degrees for the minor axis. This information, combined with rotational light curves obtained with the 1.5 m telescope at Sierra Nevada Observatory and the 1.23 m telescope at Calar Alto observatory, allows us to derive possible three-dimensional shapes and density estimations for the body based on hydrostatic equilibrium assumptions. The effective diameter in equivalent area is around 84 km smaller than the radiometrically derived diameter using thermal data from Herschel and Spitzer Space Telescopes. This might indicate the existence of an unresolved satellite of up to ~300 km in diameter, which is required to account for all the thermal flux, although the occultation and thermal diameters are compatible within their error bars given the considerable uncertainty of the thermal results. The existence of a potential satellite also appears to be consistent with other ground-based data presented here. From the effective occultation diameter combined with absolute magnitude measurements we derive a geometric albedo of 0.147 ± 0.005, which would be somewhat smaller if 2002 TC302 has a satellite. The best occultation light curves do not show any signs of ring features or any signatures of a global atmosphere.Funding from Spanish projects AYA2014-56637-C2-1-P, AYA2017-89637-R, from FEDER, and Proyecto de Excelencia de la Junta de AndalucĂ­a 2012-FQM1776 is acknowledged. We would like to acknowledge financial support by the Spanish grant AYA-RTI2018-098657-JI00 “LEO-SBNAF” (MCIU/AEI/FEDER, UE) and the financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de AstrofĂ­sica de AndalucĂ­a (SEV- 2017-0709). Part of the research received funding from the European Union’s Horizon 2020 Research and Innovation Programme, under grant agreement no. 687378 and from the ERC programme under Grant Agreement no. 669416 Lucky Star. The following authors acknowledge the respective CNPq grants: FB-R 309578/2017-5; RV-M 304544/2017-5, 401903/2016-8; J.I.B.C. 308150/2016-3; MA 427700/2018-3, 310683/2017-3, 473002/2013-2. This study was financed in part by the Coordenação de Aperfeiaçoamento de Pessoal de NĂ­vel Superior - Brasil (CAPES) - Finance Code 001 and the National Institute of Science and Technology of the e-Universe project (INCT do e-Universo, CNPq grant 465376/2014-2). GBR acknowledges CAPES-FAPERJ/PAPDRJ grant E26/203.173/2016, MA FAPERJ grant E-26/111.488/2013 and ARGJr FAPESP grant 2018/11239-8. E.F.-V. acknowledges support from the 2017 Preeminent Postdoctoral Program (P3) at UCF. C.K., R.S., A.F-T., and G.M. have been supported by the K-125015 and GINOP-2.3.2-15-2016-00003 grants of the Hungarian National Research, Development and Innovation Office (NKFIH), Hungary. G.M. was also supported by the Hungarian National Research, Development and Innovation Office (NKFIH) grant PD-128 360. R.K. and T.P. were supported by the VEGA 2/0031/18 grant
    • 

    corecore