158 research outputs found

    Recent excitement regarding metallothionein

    Full text link

    CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data

    Get PDF
    CS23D (chemical shift to 3D structure) is a web server for rapidly generating accurate 3D protein structures using only assigned nuclear magnetic resonance (NMR) chemical shifts and sequence data as input. Unlike conventional NMR methods, CS23D requires no NOE and/or J-coupling data to perform its calculations. CS23D accepts chemical shift files in either SHIFTY or BMRB formats, and produces a set of PDB coordinates for the protein in about 10–15 min. CS23D uses a pipeline of several preexisting programs or servers to calculate the actual protein structure. Depending on the sequence similarity (or lack thereof) CS23D uses either (i) maximal subfragment assembly (a form of homology modeling), (ii) chemical shift threading or (iii) shift-aided de novo structure prediction (via Rosetta) followed by chemical shift refinement to generate and/or refine protein coordinates. Tests conducted on more than 100 proteins from the BioMagResBank indicate that CS23D converges (i.e. finds a solution) for >95% of protein queries. These chemical shift generated structures were found to be within 0.2–2.8 Å RMSD of the NMR structure generated using conventional NOE-base NMR methods or conventional X-ray methods. The performance of CS23D is dependent on the completeness of the chemical shift assignments and the similarity of the query protein to known 3D folds. CS23D is accessible at http://www.cs23d.ca

    GeNMR: a web server for rapid NMR-based protein structure determination

    Get PDF
    GeNMR (GEnerate NMR structures) is a web server for rapidly generating accurate 3D protein structures using sequence data, NOE-based distance restraints and/or NMR chemical shifts as input. GeNMR accepts distance restraints in XPLOR or CYANA format as well as chemical shift files in either SHIFTY or BMRB formats. The web server produces an ensemble of PDB coordinates for the protein within 15–25 min, depending on model complexity and completeness of experimental restraints. GeNMR uses a pipeline of several pre-existing programs and servers to calculate the actual protein structure. In particular, GeNMR combines genetic algorithms for structure optimization along with homology modeling, chemical shift threading, torsion angle and distance predictions from chemical shifts/NOEs as well as ROSETTA-based structure generation and simulated annealing with XPLOR-NIH to generate and/or refine protein coordinates. GeNMR greatly simplifies the task of protein structure determination as users do not have to install or become familiar with complex stand-alone programs or obscure format conversion utilities. Tests conducted on a sample of 90 proteins from the BioMagResBank indicate that GeNMR produces high-quality models for all protein queries, regardless of the type of NMR input data. GeNMR was developed to facilitate rapid, user-friendly structure determination of protein structures via NMR spectroscopy. GeNMR is accessible at http://www.genmr.ca

    Protocolo terap?utico de hipercalcemia

    No full text

    Conformation of Retro-bombolitin-i In Aqueous-solution Containing Surfactant Micelles

    No full text
    Bombolitins are five naturally occurring heptadecapeptides acting at the membrane level and able to increase the activity of phospholipase A(2). As for other peptides with similar function, the biological activity of bombolitins seems to be mainly due to their ability to form amphipathic helical structures. We synthesized and tested the retro sequence of bombolitin I (retro-bombolitin I). This peptide showed an activity similar to that of the natural sequence and was able to adopt a helical structure in the presence of an amphipathic environment consisting of SDS micelles. The secondary structure of this peptide was fully characterized by CD and nmr spectroscopy. (C) 1994 John Wiley and Sons, Inc
    corecore