215 research outputs found
Recent Trends in Living Arrangements in Fourteen Industrialized Countries
The present working paper provides background data on households and particularly on marital status. Its material is a resource for analysis, and among other purposes it has served as reference for the conference held at IIASA in March of this year.
The authors have provided tables that will facilitate comparisons among countries, and the graphical representations will be particularly useful in showing trends
Improving regional ozone modeling through systematic evaluation of errors using the aircraft observations during the International Consortium for Atmospheric Research on Transport and Transformation
During the operational phase of the ICARTT field experiment in 2004, the regional air quality model STEM showed a strong positive surface bias and a negative upper troposphere bias (compared to observed DC-8 and WP-3 observations) with respect to ozone. After updating emissions from NEI 1999 to NEI 2001 (with a 2004 large point sources inventory update), and modifying boundary conditions, low-level model bias decreases from 11.21 to 1.45 ppbv for the NASA DC-8 observations and from 8.26 to −0.34 for the NOAA WP-3. Improvements in boundary conditions provided by global models decrease the upper troposphere negative ozone bias, while accounting for biomass burning emissions improved model performance for CO. The covariances of ozone bias were highly correlated to NOz, NOy, and HNO3 biases. Interpolation of bias information through kriging showed that decreasing emissions in SE United States would reduce regional ozone model bias and improve model correlation coefficients. The spatial distribution of forecast errors was analyzed using kriging, which identified distinct features, which when compared to errors in postanalysis simulations, helped document improvements. Changes in dry deposition to crops were shown to reduce substantially high bias in the forecasts in the Midwest, while updated emissions were shown to account for decreases in bias in the eastern United States. Observed and modeled ozone production efficiencies for the DC-8 were calculated and shown to be very similar (7.8) suggesting that recurring ozone bias is due to overestimation of NOx emissions. Sensitivity studies showed that ozone formation in the United States is most sensitive to NOx emissions, followed by VOCs and CO. PAN as a reservoir of NOx can contribute to a significant amount of surface ozone through thermal decomposition
The Effect of Six Days of Dietary Nitrate Supplementation on Performance in Trained CrossFit Athletes
Background: While it is well established that dietary nitrate reduces the metabolic cost of exercise, recent evidence suggests this effect is maintained 24 h following the final nitrate dose when plasma nitrite levels have returned to baseline. In addition, acute dietary nitrate was recently reported to enhance peak power production. Our purpose was to examine whether chronic dietary nitrate supplementation enhanced peak power 24 h following the final dose and if this impacted performance in a heavily power-dependent sport. Methods: In a double-blind, randomized, crossover design, maximal aerobic capacity, body composition, strength, maximal power (30 s Wingate), endurance (2 km rowing time trial), and CrossFit performance (Grace protocol) were assessed before and after six days of supplementation with nitrate (NO) (8 mmol·potassium nitrate·d−1) or a noncaloric placebo (PL). A 10-day washout period divided treatment conditions. Paired t-tests were utilized to assess changes over time and to compare changes between treatments. Results: Peak Wingate power increased significantly over time with NO (889.17 ± 179.69 W to 948.08 ± 186.80 W; p = 0.01) but not PL (898.08 ± 183.24 W to 905.00 ± 157.23 W; p = 0.75). However, CrossFit performance was unchanged, and there were no changes in any other performance parameters. Conclusion: Consuming dietary nitrate in the potassium nitrate salt form improved peak power during a Wingate test, but did not improve elements of strength or endurance in male CrossFit athletes
The Effect of Six Days of Dietary Nitrate Supplementation on Performance in Trained CrossFit Athletes
Background: While it is well established that dietary nitrate reduces the metabolic cost of exercise, recent evidence suggests this effect is maintained 24 h following the final nitrate dose when plasma nitrite levels have returned to baseline. In addition, acute dietary nitrate was recently reported to enhance peak power production. Our purpose was to examine whether chronic dietary nitrate supplementation enhanced peak power 24 h following the final dose and if this impacted performance in a heavily power-dependent sport. Methods: In a double-blind, randomized, crossover design, maximal aerobic capacity, body composition, strength, maximal power (30 s Wingate), endurance (2 km rowing time trial), and CrossFit performance (Grace protocol) were assessed before and after six days of supplementation with nitrate (NO) (8 mmol·potassium nitrate·d−1) or a noncaloric placebo (PL). A 10-day washout period divided treatment conditions. Paired t-tests were utilized to assess changes over time and to compare changes between treatments. Results: Peak Wingate power increased significantly over time with NO (889.17 ± 179.69 W to 948.08 ± 186.80 W; p = 0.01) but not PL (898.08 ± 183.24 W to 905.00 ± 157.23 W; p = 0.75). However, CrossFit performance was unchanged, and there were no changes in any other performance parameters. Conclusion: Consuming dietary nitrate in the potassium nitrate salt form improved peak power during a Wingate test, but did not improve elements of strength or endurance in male CrossFit athletes
"Nutraceuticals" in relation to human skeletal muscle and exercise.
Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine
Pre-sleep feeding, sleep quality, and markers of recovery in division I NCAA female soccer players
Pre-sleep nutrition habits in elite female athletes have yet to be evaluated. A retrospective analysis was performed with 14 NCAA Division I female soccer players who wore a WHOOP, Inc. band – a wearable device that quantifies recovery by measuring sleep, activity, and heart rate metrics through actigraphy and photoplethysmography, respectively – 24 h a day for an entire competitive season to measure sleep and recovery. Pre-sleep food consumption data were collected via surveys every 3 days. Average pre-sleep nutritional intake (mean ± sd: kcals 330 ± 284; cho 46.2 ± 40.5 g; pro 7.6 ± 7.3 g; fat 12 ± 10.5 g) was recorded. Macronutrients and kcals were grouped into high and low categories based upon the 50th percentile of the mean to compare the impact of a high versus low pre-sleep intake on sleep and recovery variables. Sleep duration (p = 0.10, 0.69, 0.16, 0.17) and sleep disturbances (p = 0.42, 0.65, 0.81, 0.81) were not affected by high versus low kcal, PRO, fat, CHO intake, respectively. Recovery (p = 0.81, 0.06, 0.81, 0.92), RHR (p = 0.84, 0.64, 0.26, 0.66), or HRV (p = 0.84, 0.70, 0.76, 0.93) were also not affected by high versus low kcal, PRO, fat, or CHO consumption, respectively. Consuming a small meal before bed may have no impact on sleep or recovery
Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review
The leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) has been extensively used as an ergogenic aid; particularly among bodybuilders and strength/power athletes, who use it to promote exercise performance and skeletal muscle hypertrophy. While numerous studies have supported the efficacy of HMB in exercise and clinical conditions, there have been a number of conflicting results. Therefore, the first purpose of this paper will be to provide an in depth and objective analysis of HMB research. Special care is taken to present critical details of each study in an attempt to both examine the effectiveness of HMB as well as explain possible reasons for conflicting results seen in the literature. Within this analysis, moderator variables such as age, training experience, various states of muscle catabolism, and optimal dosages of HMB are discussed. The validity of dependent measurements, clustering of data, and a conflict of interest bias will also be analyzed. A second purpose of this paper is to provide a comprehensive discussion on possible mechanisms, which HMB may operate through. Currently, the most readily discussed mechanism has been attributed to HMB as a precursor to the rate limiting enzyme to cholesterol synthesis HMG-coenzyme A reductase. However, an increase in research has been directed towards possible proteolytic pathways HMB may operate through. Evidence from cachectic cancer studies suggests that HMB may inhibit the ubiquitin-proteasome proteolytic pathway responsible for the specific degradation of intracellular proteins. HMB may also directly stimulate protein synthesis, through an mTOR dependent mechanism. Finally, special care has been taken to provide future research implications
- …