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Abstract  23	

Skeletal muscles have a fundamental role in locomotion and whole body metabolism, 24	

with muscle mass and quality being linked to improved health and even lifespan. 25	

Optimising nutrition in combination with exercise is considered an established, 26	

effective ergogenic practice for athletic performance. Importantly, exercise and 27	

nutritional approaches also remain arguably the most effective countermeasure for 28	

muscle dysfunction associated with ageing and numerous clinical conditions e.g. 29	

cancer cachexia, COPD and organ failure, via engendering favourable adaptations 30	

such as increased muscle mass and oxidative capacity. Therefore, it is important to 31	

consider the effects of established and novel effectors of muscle mass, function and 32	

metabolism in relation to nutrition and exercise. To address this gap, in this review we 33	

detail existing evidence surrounding the efficacy of a non-exhaustive list of 34	

macronutrient, micronutrient and “nutraceutical” compounds alone and in 35	

combination with exercise in relation to skeletal muscle mass, (protein and fuel) 36	

metabolism and exercise performance (i.e. strength and endurance capacity). It is long 37	

established that macronutrients have specific roles and impacts upon protein 38	

metabolism and exercise performance i.e. protein positively influences muscle muscle 39	

mass and protein metabolism, whilst carbohydrate and fat intakes can influence fuel 40	

metabolism and exercise performance. Regarding novel nutraceuticals, we show the 41	

following ones in particular may have effects in relation to: 1) muscle mass/protein 42	

metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid and 43	

phosphatidic acid, and 2) exercise performance: (i.e. strength or endurance capacity); 44	

hydroxyl β-methylbutyrate, carnitine, creatine, nitrates and β-alanine.  45	

Key words: nutrients, metabolism, exercise, skeletal muscle, nutraceuticals 46	

 47	
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Introduction 48	

Skeletal muscle represents the largest organ in the body, comprising ~40% of whole 49	

body mass (123). The functions of skeletal muscle extend beyond the widely 50	

recognized role of locomotion, serving as the bodies’ largest tissue for glucose storage 51	

and utilization (101, 121) and a primary site of lipid metabolism (104). Muscle also 52	

stores ~40% of total body amino acids (AA), that can act as a source of fuel and an 53	

AA substrate for other tissues in times of illness or fasting via release of glucogenic, 54	

ketogenic AA (264). Changes in muscle mass are regulated by dynamic turnover of 55	

the muscle protein pool (~1-1.5 %/day) with skeletal muscle mass remaining constant 56	

when muscle protein synthesis (MPS) and muscle protein breakdown (MPB) are in 57	

balance (8). During situations of muscle growth, (e.g. resistance exercise training 58	

(RET) combined with AA substrate), net MPS exceeds MPB (8). Conversely, net 59	

MPB is greater than MPS in conditions of muscle loss (e.g. bed rest, cachexia and 60	

sarcopenia (75)); in humans such wasting conditions are typically predominantly due 61	

to reduced MPS under fasted and/or fed conditions (191)). In addition to the 62	

regulation of muscle and function being clinically relevant, optimal strategies to 63	

promote growth, maintenance of muscle mass and exercise performance (i.e. strength 64	

and endurance capacity) are of great interest to performance scientists. Therefore, a 65	

major area of interest surrounds the role of macronutrients, micronutrients and 66	

nutraceuticals that influence muscle metabolism and function.  67	

 68	

The consumption of nutritional supplements with “ergogenic” claims occurs in many 69	

populations including athletes (186), the elderly (24), chronic disease sufferers (78) 70	

and sedentary (201) adults, often without sound empirical evidence. As such there is a 71	

need to review the continually growing area of nutrients/ nutraceuticals and associated 72	
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mechanisms on aspects of skeletal muscle health, in order to formulate evidenced-73	

based recommendations. Indeed, previous reviews have summarized the effects of 74	

multiple nutrient/nutraceutical compounds on aspects of skeletal muscle metabolism 75	

and exercise performance (53, 171). Often such reviews target a specific population 76	

(e.g. athletes), endpoint (i.e. aerobic performance), or dosing regime (e.g. timing and 77	

amount). As such, the present review adopts a more wide-ranging scope, including 78	

data irrespective of age, training status, or other independent variables, in order to 79	

highlight universal skeletal muscle effects of each nutritional compound.  80	

 81	

Herein, we detail existing evidence for a non-exhaustive list of established and 82	

emerging nutrients in relation to some or all of the following endpoints: 1) muscle 83	

mass; 2) metabolism (protein and fuel) and, 3) exercise performance (i.e. strength and 84	

endurance capacity). Since nutrition and exercise are the two key modifiable lifestyle 85	

factors for maintaining muscle health, this review will critique available literature 86	

examining the muscular responses to nutrient supplementation alone, nutrient 87	

supplementation plus acute exercise and chronic nutrient supplementation combined 88	

with chronic exercise training (i.e. more than one bout of exercise). We shall include 89	

responses to both resistance exercise (RE)/RET and endurance exercise/endurance 90	

exercise training (EE/EET) since exercise mode may differentially influence muscular 91	

responses to nutrition. Lastly, due to the emerging nature of some nutrients, where 92	

mechanisms have not been well defined in humans, data from other models (e.g. 93	

cell/rodents) have been drawn upon where necessary. Therefore, this review should be 94	

of interest to scientists, clinicians, and athletes aiming to optimize muscle mass and 95	

function in clinical and athletic populations. Out of the scope of this review are a 96	

selection of established nutrients with purported effects on muscle (e.g. caffeine and 97	
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green tea) due to the large volume of existing review literature available. 98	

Furthermore, some emerging nutrients (e.g. tomatidine and minerals) have been 99	

omitted from this review due to the paucity of existing literature. We therefore direct 100	

readers to the following publications for further reading regarding nutrients not 101	

discussed herein (53), in particular; caffeine (96), green tea (114), tomatidine (69) and 102	

minerals (209). Since we have not performed a systematic analysis, we apologize to 103	

those whose work we have not alluded to.  104	

 105	

Definitions of macro/micronutrients and “nutraceuticals” 106	

From the outset it is important that we define what is meant when we refer to 107	

macronutrients, micronutrients and nutraceuticals, since the classification can be 108	

misinterpreted due to obscure classification boundaries. Proteins, fats and 109	

carbohydrate (CHO) are required by the body in large amounts (i.e. g/kg/day), and are 110	

therefore termed macronutrients (139). Micronutrients are defined as vitamins and 111	

trace elements (minerals) (212, 213) essential to our diet, albeit in small amounts (i.e. 112	

mg/kg/day), to maintain normal physiological and metabolic function. Nutraceuticals 113	

is an emerging term within the scientific literature, which has not been well defined. 114	

A recent review defined a nutraceutical as a nutrient compound “with added extra 115	

health benefits” (i.e. in addition to the basic nutritional value contained in foods) 116	

(210). For the purpose of this review we define a nutraceutical as: “a compound that 117	

alone or in tandem with exercise, impacts major physiological end-point(s)” e.g. 118	

effectors of whole body metabolism, skeletal muscle mass and/or whole body/muscle 119	

function. 120	

 121	

Established macronutrients and exercise 122	



	 6	

Providing a mixed macronutrient feed containing protein, CHO and fat stimulates 123	

MPS (200). The absolute stimulation of MPS is highly dependent on the AA content, 124	

with the provision of AA alone being sufficient to maximally stimulate MPS (15); this 125	

effect is entirely attributable to the essential AA (EAA) (218). Of the EAA, the 126	

branched chain AA (BCAA) provide the most potent anabolic stimulation (9), 127	

particularly leucine (9, 256). This stimulation of MPS by AA is highly dose 128	

dependent and saturable, with maximal stimulation provided by between 20-40g of 129	

high quality protein (166, 167, 230, 263)) or 10-20g of EAA (58). Furthermore, this 130	

MPS stimulation is finite, where following an initial lag-period of ~30 minutes during 131	

I.V infusion (or ~45-60 minutes following oral ingestion – to allow for the digestion, 132	

absorption and transport of AA into the systemic circulation), the rate of MPS is 133	

increased ~2-3-fold reaching a maximum by 1.5-3h. Subsequently rates of MPS 134	

return to baseline (~2-3h post ingestion) despite continued plasma and muscle AA 135	

availability and elevated anabolic signaling (7). Thereafter, muscle remains refractory 136	

to further stimulation for an as yet undefined period; a phenomenon coined “muscle 137	

full” (7). This ~2-3h period of MPS stimulation can be extended depending on the 138	

type and dose of AA and macronutrient co-ingestion in combination with RE (51). 139	

The timing of protein ingestion in close proximity to the performance of acute RE, 140	

which when performed alone stimulates MPS for ~48h (190), is thought to be 141	

important. This is because there is an enhanced sensitivity of the muscle to the 142	

anabolic properties of AA for at least 24h post-exercise (36), synergistically 143	

impacting MPS. However, protein ingestion before (236), during (14), 1h or 3h (199) 144	

after RE have all elicited similar post-exercise increases in MPS.  145	

 146	
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The mechanisms underlying the anabolic effects to nutrition involve both the 147	

stimulation of MPS (200) and suppression of MPB (255); however, it is generally 148	

accepted that increases in MPS is the primary driver (8). Following transportation into 149	

the muscle cell, leucine in particular stimulates mammalian target of rapamycin 150	

complex-1 (mTORC1) (9), which is considered a key regulator of cell growth. 151	

mTORC1 activation leads to the phosphorylation of the downstream translation 152	

initiation factors 4E-binding protein (4EBP1) and 70-kDa ribosomal protein S6 kinase 153	

1 (p70S6K1) (see Figure 1), stimulating the binding of eukaryotic initiation factor 4A 154	

(eIF4A) and 4E (eIF4E) to 4G (eIF4G) to form the 4F (eIF4F) complex (135). The 155	

eIF4F complex promotes the assembly of the 48S preinitiation complex, via 156	

mediating the binding of mRNA to the 43S preinitiation complex, thereby promoting 157	

MPS (135). Currently the AA sensor coupling intracellular AA signaling to mTORC1 158	

remains to be fully defined, although Rag GTPases (207), leucyl-tRNA synthetase 159	

(105) and sestrin2 (265) are all proposed candidates. This has led to intense interest 160	

into the development of novel leucine enriched supplementation regimes to aid 161	

maintenance of muscle mass (44, 249). Unlike dietary protein, neither fats nor CHO 162	

lead to a direct stimulation of MPS (91, 95, 138); nonetheless, they can influence the 163	

bioavailability of AA when provided as part of a mixed meal - slowing plasma AA 164	

appearance and increasing AA retention (84) without blunting muscle anabolism (95). 165	

Finally, CHO (as well as AA (172, 173)) are insulin secretagogues, positively 166	

impacting net muscle anabolism via inhibition of MPB (255) (rather than stimulation 167	

of MPS (102, 255)).  168	

 169	

Exercise combined with feeding extends the stimulation of MPS (59) thereby 170	

delaying the “muscle full” set-point (8). It is the cumulative stimulation of muscle 171	
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protein turnover with repeated bouts of exercise and feeding that drives exercise-172	

induced skeletal muscle remodeling and hypertrophy (29). The impact of 173	

macronutrient supplements on exercise adaptation is multifarious. It is established that 174	

CHO intake helps to spare muscle and liver glycogen stores, whilst also leading to a 175	

more rapid recovery of these stores post exercise (47, 162). The benefits of chronic 176	

protein supplementation alongside exercise are more inconsistent, with a number of 177	

studies showing positive (120, 134, 259) or negligible findings (149, 198, 242). 178	

However, a recent meta-analysis suggested that overall, protein supplementation does 179	

lead to an augmentation of muscle mass and strength gains during chronic RET (49). 180	

To conclude, it is now well established that macronutrients play key roles in 181	

promoting muscle mass maintenance/ growth and functional adaptations. Future work 182	

should focus on identifying the underlying cellular mechanisms and associated 183	

refractory period of “muscle-full”.  184	

 185	

Emerging nutraceuticals and exercise 186	

 187	

Leucine metabolites  188	

Leucine, as a BCAA can be metabolized within muscle, engendering the possibility 189	

that its metabolites harbor anabolic effects. For instance, the keto-acid derivative of 190	

leucine metabolism, alpha-ketoisocaproate (KIC), was shown to stimulate MPS when 191	

provided by infusion; however this effect could simply be due to KIC being reversibly 192	

transaminated to leucine (74). There is however, good evidence of anabolic activities 193	

of the more distal leucine metabolite, β-hydroxy-β-methylbutyrate (HMB) produced 194	

via cytosolic KIC dioxygenase (174). Ingestion of ~3g HMB in humans elicited 195	

comparable increases in MPS to 3g of leucine, whilst also suppressing MPB 196	
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independently of insulin (256). Similarly to leucine, the stimulation of MPS by HMB 197	

is attributable to enhanced mTORC1 signaling (256). In order to understand the 198	

insulin-independent suppression of MPB associated with HMB, numerous molecular 199	

targets associated with different proteolytic pathways (beclin 1, calpain 1, MuRF1, 200	

Mafbx and cathepsin L) have been investigated, although no detectable changes in the 201	

protein abundance or post-translational modifications were observed (256). Although 202	

it has been previously shown that there is a disparity between protein breakdown and 203	

the abundance in proteolytic proteins (102). It should be noted that only small 204	

amounts of HMB (~5%) are generated from normal leucine metabolism (137) 205	

meaning that in order to obtain 3g of HMB (a commonly supplemented amount) one 206	

would have to consume 60g leucine (260). Thus, when supplementing with 207	

physiological doses of leucine it is unlikely that HMB is the main anabolic 208	

constituent, hence the practical use of HMB as a stand alone nutritional supplement.  209	

 210	

Indeed, longer term studies have found that HMB preserved muscle mass during 211	

periods of disuse (65), while year long supplementation of HMB (plus arginine and 212	

lysine) in the elderly led to improved preservation of lean body mass, possibly due to 213	

an augmentation in muscle protein turnover (10). Although, since HMB was 214	

administered as part of a nutritional cocktail it is impossible to delineate whether 215	

HMB was solely responsible for the effects on lean body mass. However, recent 216	

meta-analysis of 287 elderly participants (147 HMB-supplemented and 140 controls) 217	

found HMB supplementation led to greater gains in muscle mass compared to 218	

controls, indicating HMB is an effective ergogenic aid, at least in the elderly 219	

population, for preventing the loss of lean body mass (268). These anabolic properties 220	

of HMB have also been suggested to facilitate favorable RET adaptations. For 221	
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example, supplementation of HMB (3g/day) with RET for between 4 and 7 weeks led 222	

to heightened increases in muscle strength (181), lean body mass (261) and fat free 223	

mass (174) compared with RET alone. However, not all studies have reported positive 224	

effects; for instance RET for 1 month combined with between 3 to 6g/day of HMB 225	

did not change parameters of body composition in RE trained males (140). In this 226	

latter case, HMB was provided in its calcium form (CaHMB) (140), which compared 227	

to the free acid form (FA-HMB), may have lower bioavailability and therefore might 228	

not enhance anabolism to the same extent (82) (though this premise remains to be 229	

tested). 230	

 231	

Another ergogenic effect of HMB is the purported ability to attenuate exercise-232	

induced muscle damage (EIMD). For example, oral HMB supplementation (3g/day 233	

for 6 weeks) in EE athletes attenuated the increase in creatine phosphokinase and 234	

lactate dehydrogenase (plasma markers of EIMD) after a 20 km time trial run 235	

compared to placebo (136). This protective effect of HMB may be due to HMB being 236	

a precursor of de novo cholesterol synthesis (175), which is critical for cell membrane 237	

(sarcolemmal) maintenance. Thus, HMB may maintain muscle membrane integrity 238	

during bouts of damaging exercise. 239	

 240	

Furthermore, HMB has been shown to be efficacious for improving EE performance. 241	

For example, Vukovich et al. (2001) reported that HMB in combination with EE 242	

prolonged the time to reach the onset of blood lactate accumulation and VO2PEAK, 243	

although via an unknown mechanism (246). Others have investigated markers of 244	

endurance performance following high intensity interval training (HIIT) with or 245	

without HMB supplementation. To exemplify, following 5 weeks of HIIT-based 246	
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running in combination with 3g/d ca-HMB, VO2MAX improved more compared to 247	

placebo (144). The authors speculated that the performance benefits were attributable 248	

to the preservation of the cell-membrane, however was membrane stability was not 249	

measured in the study and thus no mechanistic conclusions can be drawn. 250	

Furthermore, HMB in untrained participants potentiated the effects of HIIT on 251	

physical working capacity at the onset of neuromuscular fatigue, compared to HIIT 252	

training alone (163).  253	

 254	

In summary, the literature supports a role for HMB supplementation in promoting: 1) 255	

muscle mass, demonstrated by the preservation or increase in muscle mass when 256	

combined with RET, 2) muscle metabolism, since HMB stimulates MPS and inhibits 257	

MPB, and 3) aerobic and strength performance. However, data reporting negligible 258	

effects of HMB does exist (140, 214); prior exercise training history and/or being 259	

accustomed to an exercise stimulus may determine the effectiveness of the 260	

intervention. This is supported by evidence that HMB supplementation combined 261	

with RET in trained individuals had no effect on muscle strength or lean body mass 262	

versus placebo (214). Further research is warranted which rigorously investigates: 1) 263	

the mechanisms regulating the insulin-independent suppression of MPB associated 264	

with HMB supplementation, 2) the effects of novel and accustomed exercise in 265	

combination with HMB on endurance performance, and 3) the effects of EET and 266	

HMB on muscle mass.  267	

 268	

Creatine 269	

Creatine (Cr) is an endogenously formed metabolite synthesised from arginine, 270	

glycine and methionine (20). Found almost exclusively in skeletal muscle, Cr levels 271	
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can be increased via endogenous synthesis in the liver and pancreas or exogenously 272	

from foodstuff, particularly meat and fish (43, 99). Following oral consumption of Cr, 273	

Cr is absorbed into the systemic circulation and is taken up by skeletal muscle via the 274	

sarcolemal Na+/Cl--dependent transporter, soluble carrier family 6 member 8 275	

(SLC6A8) (126). Intramuscular Cr can then be phosphorylated to phosphocreatine in 276	

a reversible reaction facilitated by the enzyme, creatine kinase. During high energy 277	

demands, the phosphate of phosphocreatine plus free ADP is used for ATP synthesis 278	

(126). Another fate of intramuscular Cr is the conversion to the end-product 279	

creatinine, which due to its muscle exclusivity correlates with muscle mass (110). 280	

Creatinine diffuses out of the muscle cell and is removed from the body via urine 281	

(126). Oral Cr administration (20-30g/day for 2 or more days) increases total muscle 282	

Cr stores by >20%, of which 20-30% is stored in the form of phosphocreatine (PCr) 283	

(107). The greatest Cr loading effects are seen in those with the lowest basal Cr pool 284	

levels i.e. vegetarians (99), thus basal muscle Cr levels are an important determinant 285	

of Cr uptake (43, 107). The ergogenic effects of Cr are facilitated by elevated resting 286	

PCr, which sustains PCr-mediated ATP resynthesis during intense anaerobic exercise 287	

(42) primarily in fatigue susceptible type II fibers (43), thus improving acute high 288	

intensity performance. Increased basal muscle PCr levels also expedite the 289	

replenishment of PCr stores during recovery from intense exercise, leading to 290	

improved performance over repeated bouts of sprint exercise (43, 99). For example, 291	

20g/day of Cr for 5 days led to sustained isokinetic torque compared to placebo 292	

during repeated bouts of maximal voluntary contractions (100). Similar results have 293	

been obtained when employing different exercise modes such as cycling (18, 70). In 294	

contrast, some studies have shown no effect of Cr supplementation on exercise 295	

performance (55, 170, 219, 234). For example, despite increased total muscle Cr 296	
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following 5 days 30g Cr (and 30g dextrose) supplementation, there were no 297	

improvements in sprint exercise performance (219). A lack of ergogenic effect may 298	

be attributable to the small total muscle Cr levels of ~12mmol/kg/dry weight (219), 299	

where previous reports show total Cr of >20 mmol/kg dry mass results in ergogenic 300	

benefit (42). Factors affecting the extent to which muscle Cr stores increase are not 301	

well known, although pre-existing muscle Cr, exercise (107) and CHO ingestion (98) 302	

may be potential factors. Also in regards to performance, Cr supplementation 303	

improves the rate of functional recovery following exercise (54), which might be 304	

mediated by Cr promoting gene expression thereby aiding MPS during the recovery 305	

periods (54, 258), ultimately increasing the deposition of newer functional proteins 306	

for improved functional recovery. Indeed, Cr supplementation will also increase 307	

muscle PCr, which might increase local rephosphorylation from ADP to ATP (54), 308	

thus providing more energy for contraction. As such, performance during successive 309	

bouts is maximized (i.e. can work at higher training loads) which, in-turn, may 310	

contribute to the gains in strength observed when combined with RET (31, 63, 66).  311	

 312	

In addition to energetic impacts, evidence supports a role for chronic Cr 313	

supplementation, typically provided as a loading dose (i.e. ~5 days of 20/30g) 314	

followed by maintenance doses (~ 5g) (32), for increasing muscle mass (25, 31, 245). 315	

For example 12 weeks RET plus Cr (25g/day for the first week, followed by a 316	

maintenance dose of 5g/day for the rest of the training duration) resulted in 317	

significantly greater fat free mass, strength and fibre cross sectional area gains 318	

compared to placebo (245). Similarly, 14 weeks of whole body RET (3 x/week) 319	

combined with Cr (5g/day plus 2g dextrose) led to significantly greater gains in fat 320	

free mass (31). Furthermore, a recent meta-analysis concluded that Cr 321	
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supplementation combined with RET elicited further increases in fat free mass 322	

compared to RET alone (albeit in older adults) (66). This meta-analysis reported a 323	

weighted mean difference (WMD) of 1.33kg for RET combined with Cr (66), 324	

compared to 0.69kg for RET with protein (49) demonstrating the potent ergogenic 325	

effect of Cr on fat free mass. The mechanisms regulating the effects of Cr on muscle 326	

mass remain to be fully elucidated; although it is known that acute provision of Cr 327	

does not directly stimulate MPS either with (152) or without RE (153). However, Cr 328	

did augment the satellite cell (SC) response following RE (178), which may 329	

contribute to hypertrophic gains since increased SC content is observed following 330	

chronic RET (241). Although the contribution of SC to hypertrophy is still debated 331	

(158), theoretically the nucleus content in hypertrophying muscle fibres becomes 332	

diluted such that additional nuclei are required for continued growth. As such, SC 333	

fuse and donate nuclei to the pre-existing muscle fibres, thereby increasing the 334	

transcriptional capacity of the muscle cell and thus the potential for growth (30). 335	

Additionally, augmented PCr availability and ATP resynthesis during intense exercise 336	

likely permits greater work output. Greater work may be a factor which stimulates 337	

greater muscle gene expression thereby promoting muscle mass accretion observed 338	

with Cr supplementation (32, 204, 257). It is possible that changes in fat free mass 339	

may be in part attributable to the osmotic potential of elevated intracellular Cr leading 340	

to myocellular water retention (204, 273). This potential increase in cell volume from 341	

Cr-induced fluid retention may then act as an anabolic signal, activating intracellular 342	

signalling cascades that maintain cellular function (204). For example, the attachment 343	

complex protein focal adhesion kinase (FAK), which is critical for osmosensing and 344	

hypertrophic signalling (56), is up-regulated following Cr supplementation (204). 345	

 346	
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To summarize, Cr supplementation is capable of increasing total muscle Cr stores 347	

which improves performance via maintaining PCr mediated ATP re-synthesis, 348	

although not all studies have shown improved exercise performance. Beyond 349	

performance, chronic Cr supplementation combined with RET is capable of 350	

stimulating muscle mass accretion. Although, acute affects of Cr supplementation on 351	

MPS are not shown, potentiating RET capacity and enhanced recovery likely mediate 352	

increased muscle mass. Further studies are needed to firmly establish factors which 353	

determine the variability of Cr storage in muscle, since this could have implications 354	

for optimizing the dosing regime of Cr. 355	

 356	

Carnitine  357	

Carnitine is synthesized endogenously from AA precursors and can also be obtained 358	

exogenously from the diet, particularly red meat, with the majority of whole body 359	

carnitine (95%) being stored in skeletal muscles (26). Carnitine has well documented 360	

roles in regulating the translocation of long-chain fatty acids into the mitochondrial 361	

matrix for subsequent β-oxidation (223). This process is regulated via the 362	

mitochondrial enzyme carnitine palmitoyltransferase 1 (CPT1) catalysing the 363	

esterification of carnitine with long-chain acyl-coA (223). The long chain 364	

acylcarnitine is transported across the mitochondrial membrane into the mitochondrial 365	

matrix, concurrently with the exchange of free carnitine from the mitochondrial 366	

matrix (94). Inside the mitochondrial matrix, acylcarnitine is transesterified to long 367	

chain acyl-CoA and free carnitine via carnitine palmitoyltransferase 2 (CPT2) (223). 368	

Subsequently, the long chain acyl-CoA is able to undergo β-oxidation. Readers are 369	

directed towards the review by Stephens et al., (223) for a more comprehensive 370	

overview regarding the role of carnitine in fatty acid translocation.  371	
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 372	

Therefore, increasing muscle carnitine content could hypothetically enhance fat 373	

oxidation whilst sparing glycogen, therein posing an attractive ergogenic strategy for 374	

delaying fatigue during prolonged aerobic exercise and aiding body weight control by 375	

promoting fat oxidation. However, a number of studies have failed to increase muscle 376	

carnitine via intravenous infusion despite increasing plasma carnitine availability 377	

(225). Similarly, oral consumption of carnitine acutely (220) and chronically (247) 378	

failed to increase muscle carnitine levels. It is likely the poor bioavailability of oral 379	

carnitine and rapid urinary clearance (106) explain, at least partly, why carnitine 380	

supplementation alone does not increase muscle carnitine stores (225). Consequently, 381	

several strategies have been tested to stimulate muscle carnitine accretion; concurrent 382	

hyperinsulinaemia and hypercarnitineaemia increased human muscle carnitine content 383	

by ~15% (225) and carnitine plus CHO supplementation promoted muscle carnitine 384	

accretion (211). Mechanisms by which insulin can facilitate increased muscle 385	

carnitine are purported to be due to insulin increasing Na+-dependent active transport 386	

of carnitine into the muscle via organic cation transporter (OCTN2) (225). Similarly, 387	

Na+-dependent uptake of AA (274) and Cr (97) by skeletal muscle is increased by 388	

insulin, thereby supporting the proposed mechanisms of carnitine uptake (225). 389	

However, CHO in addition to protein blunts the stimulation of muscle carnitine 390	

uptake (211). This was previously suggested to be related to AA inhibiting carnitine 391	

intestinal absorption (233), however, since the combination of CHO and protein led to 392	

greater plasma and urinary carnitine versus CHO alone, this suggests otherwise (211). 393	

The precise mechanisms underlying the blunting effect of protein on carnitine uptake 394	

into skeletal muscle remain to be fully identified.  395	

 396	
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By increasing muscle carnitine content, human fuel metabolism can be manipulated. 397	

For example, acute increases in resting skeletal muscle carnitine content led to an 398	

inhibited glycolytic flux (denoted by reduced lactate) and CHO oxidation 399	

(demonstrated via reduced pyruvate dehydrogenase complex activity) concurrent with 400	

increased muscle glycogen and long-chain acyl-CoA accumulation (224). These 401	

studies therefore support the notion that carnitine can enhance fat oxidation whilst 402	

sparing glycogen. A subsequent study by the same group found a 30% increase in 403	

muscle carnitine content following dietary carnitine (1.36g) and CHO (80g) twice a 404	

day for 6 months and a ~55% reduction in glycogen use during low intensity exercise 405	

(30 minutes cycling at 50% VO2max) compared to controls (250). Additionally, 406	

following 3 months supplementation, carnitine and CHO feeding prevented the 2kg 407	

increase in body mass, which was seen in the control group (250). The authors 408	

speculate that the lack of increase in body mass in the carnitine group may be due to 409	

carnitine-induced increases in long-chain fatty acid oxidation (250).  410	

 411	

Subsequent studies have supported the role of carnitine combined with CHO for the 412	

prevention of fat gain, which was associated with increased fat oxidation during low 413	

intensity exercise (227). Conversely, increased CHO but not fat oxidation during 414	

steady-state exercise has been reported following 2 weeks of carnitine 415	

supplementation (3g/day carnitine and tartrate combined with CHO meals) (1), and 1 416	

month of carnitine intake (3g/day carnitine and tartrate) had no effect on substrate 417	

oxidation during steady-state exercise (27). These findings conflict with those 418	

reported at rest and differ from hypotheses which suggest limited carnitine availability 419	

may limit fat oxidation during exercise (224). Interestingly, in the study by Broad and 420	

colleagues (27) there was no mention of daily carnitine supplementation being co-421	
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ingested with supplemental CHO, which is critical for increasing muscle carnitine 422	

stores (226). Therefore the protocol might have been suboptimal for increasing 423	

muscle carnitine stores, which was not measured within the study, and thus may 424	

explain the negligible effect of carnitine on substrate utilisation.  425	

 426	

Thus, insulin-stimulated carnitine uptake is capable of increasing muscle carnitine 427	

stores (when combined with CHO), which promotes fat oxidation, spares muscle 428	

glycogen and thereby improves endurance performance. Further work is required to 429	

fully elucidate the mechanisms regulating the blunting of carnitine uptake when 430	

combined with CHO and protein.  431	

 432	

n-3 polyunsaturated fatty acids  433	

n-3 polyunsaturated fatty acids (n-3 PUFA), contain a double bond at the third 434	

carbon atom from the end of the carbon chain. Abundantly found in walnuts and oily 435	

fish, there are 3-types of n-3 PUFA: 1) alpha-linoleic acid (ALA), 2) 436	

eicosapentaenoic acid (EPA), and 3) docosahexaenoic acid (DHA). n-3 PUFA serve 437	

well established roles as critical components of cell membranes and as substrates for 438	

lipid signaling (37). Early evidence demonstrated a role for n-3 PUFA in muscle 439	

anabolism when n-3 PUFA-enriched feed provided to growing steers increased the 440	

phosphorylation of anabolic signaling and the non-oxidative whole-body disposal of 441	

AA, representative of increased whole-body protein synthesis (85). Additionally, 442	

fish oil containing 18% EPA attenuated the loss of skeletal muscle following 30% 443	

burn in guinea pigs, which may be mediated by EPA reducing inflammatory related 444	

prostanoids (4). Hence there is interest for the application of n-3 PUFA as a 445	

nutritional supplement in humans. It has been suggested that fish oil 446	
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supplementation in humans may increase muscle n-3 PUFA content (160), have 447	

anti-inflammatory properties (128) via reduced leukotriene B4 formation (an inducer 448	

of inflammation) (79) and attenuate the loss of muscle mass in disease states, 449	

possibly via reductions in pro-inflammatory cytokines (203). Furthermore, n-3 450	

PUFA might potentiate anabolic responses to nutrition in skeletal muscle. In support 451	

of this, 8 weeks n-3 PUFA supplementation (1.86g EPA plus 1.5g DHA/day) was 452	

shown to augment hyperaminoacidaemia-hyperinsulinemia induced increases in 453	

mixed MPS compared to corn oil controls in young, middle aged and older adults 454	

(215, 216). Indeed, enhanced phosphorylation of mTORC1 and the downstream 455	

target p70S6K1 were observed in young, middle aged and older adults (215, 216). 456	

However, MPS increases were observed in the context of hyperaminoacidaemia and 457	

hyperinsulinemia, which may not be physiologically obtainable. Moreover, 458	

supplementation of n-3 PUFA for 3 (151) and 6 months (217) led to increases in 459	

muscle mass and function in older adults. A recent study in C2C12 skeletal muscle 460	

cells found a 25% increase in MPS following EPA that was not observed following 461	

DHA (131), suggesting that EPA may be the more anabolic constituent of n-3 462	

PUFAs. Interestingly, both EPA and DHA stimulated p70S6K1, thus EPA might 463	

stimulate MPS via a p70S6K1 independent mechanism (131).  464	

 465	

Despite being less well defined, these positive effects of n-3 PUFA on muscle 466	

appear to be recapitulated when combined with exercise (202). Supplementation 467	

during 3 months RET promoted increases in muscle strength in older women (202), 468	

suggesting that n-3 PUFA could have a positive role on muscle protein metabolism 469	

by enhancing the anabolic response to RE (90). Despite recent contrasting findings 470	

that chronic fish oil supplementation failed to increase muscle anabolism in younger 471	
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people under rested and exercise trained conditions (161), the lack of pre- and post-472	

intervention measurements confound interpretation of these results. Additionally, 473	

positive findings regarding the efficacy of n-3 PUFA supplementation have been 474	

largely observed in older adults. Because ageing associates with blunted anabolic 475	

responses to AA and exercise, the muscular benefits of n-3 PUFA may be more 476	

pronounced in those in which anabolic responses are already sub-optimal.  477	

 478	

Whilst the combination of EE and n-3 PUFA have not been investigated in the 479	

context of muscle mass and protein metabolism, there is sound evidence to suggest 480	

that n-3 PUFA supplementation may alter fuel metabolism by improving metabolic 481	

flexibility, i.e. the ability to switch between using fat or CHO as a fuel source. For 482	

example, 6g/day of fish oil for 3 weeks led to a 35% increase in fat oxidation 483	

following a glucose or fructose bolus (61). In the context of exercise, 3 weeks fish 484	

oil supplementation (6g/day) led to a non-significant trend for greater fat oxidation 485	

during an acute bout of cycling (90 minutes at 60% O2 output), a possible 486	

compensatory response for the lower CHO oxidation (62). Further studies have 487	

found significantly greater fat oxidation during EE in humans following 3 weeks 488	

fish oil supplementation (119). Although, each of these studies lacked 489	

comprehensive investigation into the mechanisms regulating changes in metabolic 490	

flexibility, n-3 PUFA have been shown to mediate the up-regulation of genes 491	

regulating mitochondrial biogenesis, such as peroxisome proliferator-activated 492	

receptor-alpha (PPARα) and -gamma (PPARγ) and the transcription factor nuclear 493	

respiratory factor 1 (NRF1) in mice (146), offering a potential explanation for these 494	

findings. Additionally, rats fed a low fat diet supplemented with DHA had higher 495	

oxygen consumption and apparent Km for ADP in permeabilised muscle fibres 496	
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compared to placebo, indicative of improved mitochondrial function (103). Thus, 497	

effects on mitochondrial biogenesis and function may underpin the synergistic 498	

effects of n-3 PUFA and EE-associated metabolic adaptation.  499	

 500	

Collectively, n-3 PUFA supplementation beneficially effects muscle protein 501	

metabolism, which may contribute to chronic gains in muscle mass, and also shows 502	

promise for impacting metabolic flexibility. Further human research is warranted 503	

which investigates the effects of EPA and DHA individually on aspects of skeletal 504	

muscle health to establish which is the main anabolic constituent.  505	

 506	

Nitrates 507	

Nutrients that contain dietary inorganic nitrates (e.g. beetroot and lettuce) or related 508	

precursors (e.g. arginine) can increase nitric oxide (NO) availability, which is 509	

capable of modulating muscle-related processes including contraction, glucose 510	

homeostasis, blood flow (127) and satellite cell activation (5, 35). Following oral 511	

ingestion of dietary nitrate-rich foods, nitrate (NO3
-) is reduced to nitrite (NO2

-) via 512	

nitrate reductases within the mouth (68). Subsequently, NO2
- is converted into NO 513	

and additional reactive nitrogen species in the acidic environment of the stomach 514	

(2). Oral NO3
-
 increases plasma NO3

- and NO2
- levels, indicating nitrates are 515	

bioavailable.  With regards to muscle protein turnover, these compounds are thought 516	

to promote anabolism via improving blood flow (through increased NO production), 517	

thus enhancing nutrient delivery to the muscle, providing more substrates for MPS. 518	

However, it has been shown on several occasions that enhanced muscle blood flow 519	

does not augment anabolic responses in young or older males (164, 187–189). 520	

Nonetheless, dietary arginine (the principle substrate for endothelial nitric oxide 521	
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synthase (eNOS) for endogenous production of NO) supplementation did increase 522	

the weight of the soleus and EDL muscle in obese rats (125). However, in humans 523	

Tang and colleagues found oral arginine (10g), of which approximately 70% is 524	

bioavailable following ingestion (154), had no effect on muscle blood flow or MPS 525	

when provided alone or in combination with AA or acute RE (232). In contrast, 526	

vasodilatory effects of arginine have been shown when administered by IV infusion 527	

at higher doses (30g) (23). By comparison, the peak in plasma arginine was 528	

considerably lower following 10 g of oral arginine (~225 µmol.L-1) (232) versus 30g 529	

IV infused arginine (~6223 µmol.L-1) (23), thus the dose of arginine used by Tang 530	

and colleagues may not have been sufficient to increase plasma arginine to an 531	

amount which elicits effects on vasodilation. In fact the authors project that on the 532	

premise of 70% bioavailability, a total of ~43 g of oral arginine would have been 533	

required to reach similar plasma levels reported following IV infusion (232). An 534	

alternative may be to utilize the arginine precursor citrulline (156), which bypasses 535	

splanchnic extraction (267). Supplementation of citrulline in rodents was shown to 536	

stimulate MPS (179) via the mTORC1 pathway (193). However, similar effects 537	

have not been observed in humans, since there was no additional impact of citrulline 538	

(10g), when co-ingested with whey, on MPS or blood flow with or without acute RE 539	

versus whey combined with non-essential AA (NEAA) (52). Lastly, flavanols such 540	

as in cocoa (39, 109) also promote vasodilation via NO pathways (80, 132). It was 541	

recently reported that despite an acute dose of cocoa flavanols (350mg) increasing 542	

macro- and microvascular blood flow, this was not associated with enhanced muscle 543	

anabolic responses to nutrition (188), suggesting in healthy individuals nutrient 544	

delivery is not rate-limiting for muscle anabolism (189). 545	

 546	
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In contrast to muscle mass and strength related studies, a plethora of research has 547	

investigated the effects of nitrates and EE on whole body metabolism and endurance 548	

performance. An early study by Larsen et al. (2007) reported that sodium nitrate 549	

supplementation reduced the O2 cost of submaximal cycling exercise (148), whilst 550	

similar results have reported following nitrate-rich beetroot juice supplementation 551	

(11), indicative of improved aerobic metabolism or mechanical efficiency (147). In 552	

addition to metabolic improvements, nitrate supplementation provided in the form of 553	

500ml beetroot juice improved 4 and 16.1km cycling time trial performance in 554	

trained cyclists (145). These improvements are likely attributable to an enhanced 555	

rate of PCr recovery (239) increasing the rate of ATP synthesis, although this 556	

mechanism remains speculative at present. Emerging evidence from cell culture 557	

studies suggests nitrate supplementation enhances mitochondrial biogenesis and 558	

oxidative metabolism via increased 5’adenosine monophosphate-activated protein 559	

kinase (AMPK) and peroxisome proliferator-activated receptor γ co-activator 1α 560	

(PCC-1α) gene expression (240), though in vivo data is lacking. Although others 561	

have also reported nitrate-mediated improvements in EE performance have been 562	

shown (169, 269), several authors have shown no improvements (6, 48, 254). For 563	

example, consuming 140ml of beetroot juice 2.5h prior to a 1h cycling time trial did 564	

not improve time trial performance in trained cyclists compared to placebo (48). 565	

These discrepant findings may be explained by methodological differences such as 566	

the dose of nitrates (since the increase in plasma NO3
- and NO2

- is somewhat dose 567	

dependent (270)), control of nitrate intake, the source of nitrates provided and the 568	

training status of the participants. For example, since numerous studies demonstrate 569	

nitrate supplementation to have no beneficial effect on performance in well trained 570	

participants (6, 48, 254), it is likely that fitness status influences the ergogenic 571	
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potential of nitrate supplementation (127). Indeed, higher plasma levels of NO2
- 572	

were present in trained versus untrained participants pre and post acute exercise 573	

(195). This may be explained by higher nitric oxide synthase (NOS) activity (159) 574	

and/ or higher plasma nitrate values (195) in trained participants.  575	

 576	

Thus, it is established that nitrates reduce the O2 cost of aerobic exercise. Further in 577	

vivo work is required to understand whether larger oral doses, than those already 578	

tested, of arginine can enhance vasodilation and effects protein metabolism, across 579	

different ages. Furthermore, precise mechanisms regulating the nitrate-induced 580	

beneficial effect on O2 cost remain to be delineated in vivo.  581	

 582	

β-alanine and carnosine 583	

β-alanine (BA) is a beta AA produced endogenously in the liver found primarily in 584	

meat (238). BA is the rate-limiting precursor for the synthesis of carnosine, which is 585	

a dipeptide of BA and histidine that improves the muscle buffering capacity (222). 586	

BA supplementation has generated interest as an ergogenic aid since early studies 587	

found BA supplementation capable of increasing muscle carnosine stores by ~40-588	

65% demonstrating good bioavailability; a consistent and reproducible finding (16, 589	

108, 222). Although the extent to which carnosine content increases may be 590	

dependent on the dosing protocol (108). Other factors have been shown to cause 591	

muscle carnosine variability, including gender, age, dietary BA intake, 592	

vegetarianism (76) and fibre type distribution, since carnosine content is double in 593	

type II compared to type I fibres (38). The regulation of muscle carnosine stores 594	

from dietary/ supplemental sources is still under investigation (222). Oral BA may 595	

be transported across the gut via the H+-coupled PAT1 AA transporter (235), which 596	
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increases plasma availability of BA for muscle carnosine synthesis. Transport of BA 597	

into skeletal muscle has been shown to be regulated via both peptide transporter 2 598	

(PEPT2) (67) and the taurine transporter (TauT) (237), although this remains to be 599	

confirmed in humans. Once within the muscle cell, BA and sarcoplasmic histidine 600	

synthesize carnosine via carnosine synthase (222).  601	

 602	

Increased muscle carnosine stores may increase RE work capacity via regulation of 603	

the muscle buffering capacity during RE, and therefore has gained interest into the 604	

potential of BA supplementation for  promoting RE/T adaptations (133). However, 605	

10 weeks RET combined with 6.4g/day BA did not enhance body mass or strength 606	

changes in twenty-six males, despite increased muscle carnosine (133).  607	

 608	

During high intensity exercise, the build up of H+ ions reduces the intramuscular pH 609	

leading to fatigue likely due to acidosis-induced reductions in ATP generation (205). 610	

Increased muscle carnosine, via BA supplementation, is capable of reducing 611	

intramuscular acidity during high intensity exercise therefore enhancing exercise 612	

performance (57, 112, 229). For example, 4 and 10 weeks of BA supplementation 613	

increased cycling capacity (total work done) in untrained males when cycling at 614	

110% of maximum power (112), hypothesized to be due to improved intracellular 615	

buffering. In sprint-trained athletes, 4-5 weeks BA supplementation (4.8 g/day) led 616	

to increased knee torque but did not enhance sprint performance (64). Importantly, 617	

this study found increased muscle carnosine stores (+47%), demonstrating that it is 618	

possible to increase muscle carnosine even in trained athletes (64). Women 619	

supplemented with BA for 28 days delayed the onset of neuromuscular fatigue 620	



	 26	

(denoted by improved ventilatory threshold, physical working capacity and time to 621	

exhaustion), likely the result of improved intracellular buffering capacity (228).  622	

 623	

BA supplementation is associated with paresthesia (i.e. flushing) following acute 624	

doses of ≥800 mg (60, 108). This side effect is deemed dose-dependent and likely 625	

relating to BA plasma kinetics (108). Compared to pure BA, slow releasing BA 626	

capsules eliminated all paresthesia side effects, most likely explained by the 627	

attenuated BA plasma concentration and delayed time to peak (60), and thus offer a 628	

suitable alternative supplement option.  629	

 630	

BA supplementation may therefore be implemented to increase muscle carnosine 631	

stores which, in turn enhances acute EE performance, likely mediated via an 632	

enhanced intracellular buffering capacity. However, the effects of BA combined with 633	

RET needs to be studied further in vivo.  634	

 635	

Micronutrients: vitamins and exercise 636	

Vitamins are essential for many metabolic processes, however consuming vastly more 637	

or less than recommended can likely result in toxicity or deficiency, respectively  638	

(212), which can be detrimental for muscle health. For example, vitamin D (VitD) 639	

deficiency has been linked to muscle wasting (86) and as such, vitamins have been 640	

implicated in regulating muscle mass, metabolism and performance as discussed 641	

below.       642	

 643	

Vitamin D 644	

 645	
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VitD is a steroid hormone, the deficiency of which in humans throughout the world is 646	

reaching epidemic levels mostly due to reduced sun exposure (116). VitD deficiency 647	

is prevalent in many debilitating conditions including osteoporosis and rickets (116, 648	

117) and is associated with reduced muscle mass and strength (244). For example, 649	

rodent models have demonstrated VitD deficiency induced muscle loss, a 650	

consequence of increased MPB and reduced MPS compared to controls (17). The 651	

VitD receptor (VDR) is present in many tissues including muscle (89) which has led 652	

to increasing interest in the effects of VitD on muscle metabolism. Although 653	

conflicting reports exist regarding the presence of the VDR (192, 251), these 654	

discrepancies are most likely due to the use of non-validated antibodies, lack of 655	

controls or differences in antibody specificity (89).  656	

 657	

Following sun exposure or consumption of VitD-rich dietary sources/ supplements, 658	

circulating VitD bound to VitD binding protein (DBP) increases, and transports to the 659	

liver where hydroxylation (via 25-hydroxylase) generates 25-hydroxyvitamin D 660	

(25D). A second hydroxylation in the kidney (via 1α-hydroxylase) produces the 661	

biologically active form of VitD (1,25(OH)2D) (87). Mechanisms underpinning the 662	

effects of VitD on muscle metabolism are not fully understood but are believed to be 663	

in part related to the regulation of gene expression via the VDR or secondary 664	

messenger protein signaling (194). The binding of 1,25(OH)2D to the VDR causes 665	

conformational changes, allowing VDR to heterodimerize with the retinoid X receptor 666	

(RXR). This complex then binds to VitD response elements (VDREs) on the DNA, 667	

promoting gene transcription (45, 87). 1,25(OH)2D may also have non-genomic 668	

effects on intramuscular signaling by binding to a cell surface receptor (40), which, in 669	

turn, this activates intracellular signaling pathways such as the Akt and mitogen-670	
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activated protein kinases (MAPK) pathway (33). For example, VitD treatment 671	

increased myotube size, down-regulated myostatin (88), up-regulated Akt (33) and 672	

sensitized the Akt/ mTORC1 pathway and MPS responses to leucine and insulin 673	

(206) in muscle cell cultures. Thus, there is growing in vitro evidence for an anabolic 674	

role of VitD in skeletal muscle. In humans, supplementation of VitD has been 675	

proposed to increase muscle strength (13), function (83, 252), fibre area (46, 208, 676	

221), lean body mass (72) and reduce falls (83, 130), although a recent meta-analysis 677	

found no overall effects of VitD supplementation on muscle mass (13). Of 678	

importance, benefits of VitD supplements are observed particularly in the elderly or in 679	

those who are VitD deficient (13), which may be a potential explanation for some of 680	

the discrepant findings within the literature.  681	

 682	

Since VitD supplementation has been suggested to promote muscle mass and 683	

function, concurrent VitD supplementation with RET may be expected to potentiate 684	

exercise-induced adaptations. Indeed, 4 months VitD3 supplementation (1920IU/day 685	

plus 800mg/day calcium) in combination with lower-body RET for 3 months led to a 686	

greater reduction in myostatin mRNA expression, a negative regulator of muscle 687	

mass, and a greater change in the percentage of type IIa muscle fibres in young males 688	

(3). However, these changes did not translate into greater muscle strength or 689	

hypertrophy above RET alone (3). Elderly adults undertaking RET combined with 690	

VitD improved muscle quality (strength/ cross sectional area) more so than young 691	

males, thus demonstrating that elderly individuals may benefit more from VitD 692	

supplementation (3). VitD insufficient (according to VitD ranges by (118)) 693	

overweight and obese adults did not augment gains in lean body mass compared to 694	

placebo following 3 months RET and 4000IU/day VitD3 (41). This may be due to the 695	
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fact that VitD is deposited in body fat, reducing bioavailability (266) and requiring 696	

greater levels of VitD supplementation to promote muscle anabolism in this 697	

population. Similarly, others reported no change in body composition after 9 months 698	

supplementation of 400IU/day and RET 2x/week in overweight males and females 699	

(34). Since no change in body composition was seen in the training only group either, 700	

these findings may resulted from low training adherence (~53%) (34).  701	

 702	

Therefore, while there is some evidence to suggest an emerging role for the 703	

supplementation of VitD for the promotion of muscle mass and protein metabolism, 704	

more high-quality in vivo work is required. For example, investigations into the direct 705	

effect of VitD on MPS in humans are needed, as are more acute and chronic EE 706	

studies in order to understand the potential synergistic effects of VitD 707	

supplementation and exercise on muscle health. These studies need to be well 708	

controlled, accounting for basal VitD status and should determine true VitD 709	

bioavailability.  710	

 711	

Vitamins C and E (i.e. “antioxidants”)  712	

High levels of free radicals (an atom with a single unpaired electron) and reactive 713	

oxygen species (ROS) can disrupt protein homeostasis (196). This is likely due to 714	

ROS promoting catabolism via increases in the ubiquitin-conjugating activity (150) 715	

and diminishing anabolism via attenuation of MPS and signaling proteins (182), with 716	

evidence for these mechanisms arising from cell culture studies. It is therefore thought 717	

that consuming dietary antioxidants (i.e. vitamin C (VitC) and E (VitE)) capable of 718	

donating an electron to neutralize free radicals (168), may reduce ROS thus 719	

minimizing disruption of protein homeostasis. For instance, a positive relationship 720	
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was observed between VitC intake and appendicular lean body mass (209), which 721	

may be related to the fact that muscle is a major storage site for VitC (253). 722	

 723	

However, physiological levels of ROS such as that produced during exercise (248) 724	

promote gene expression (e.g. manganese superoxide dismutase (MnSOD)) (185) and 725	

cell signaling (e.g. c-Jun N-terminal kinases and MAPK’s) (92, 185) in healthy 726	

skeletal muscle. Thus, it may be hypothesized that provision of antioxidants combined 727	

with RET could hamper exercise-induced adaptations. Human studies assessing the 728	

interactions of RET and antioxidant supplementation have produced varied results 729	

with support for positive (22, 143), negative (19, 184) and negligible (21, 184) effects 730	

of antioxidants. For example, greater gains in fat free mass were observed following 6 731	

months RET combined with VitC (1000mg/day) and VitE (600mg/day) compared to 732	

RET alone, postulated to be a result of antioxidants increasing protein synthesis, 733	

although this was not measured (22, 143). However, 3 months supplementation of 734	

daily VitC (1000mg) and VitE (235mg) alongside whole body RET led to blunted 735	

gains in total lean body mass and muscle thickness (19). Ten weeks whole body RET 736	

combined with 1000mg VitC and 235mg VitE daily found negligible effects on acute 737	

MPS and muscle mass, however, the phosphorylation of anabolic signaling proteins 738	

was blunted compared to placebo (184). Supporting the lack of ability to potentiate 739	

exercise-induced adaptations, RET and antioxidants increased fat free mass but no 740	

more than RET alone (21). This may be a result of the low participant numbers or due 741	

to the fact that the participants were not vitamin deficient, therefore it may be that 742	

additional vitamin intake provides little or no added benefits. The absorption of 743	

antioxidants, particularly VitC, may also be limited, (21) further reducing the 744	

antioxidant-induced anabolic potential. Another factor which may explain the efficacy 745	
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of antioxidant supplements is the age of participants since the elderly have an altered 746	

redox status (184), which could impact the efficacy of the antioxidants. 747	

 748	

Detrimental and negligible interactions have also been reported following EE and 749	

antioxidant supplementation (183, 272). For example, daily VitC (1000mg) and VitE 750	

(235mg) during an 11 week EE training program consisting of steady-state and HIIT 751	

in humans led to blunted increases in mitochondrial protein content, indicative of 752	

blunted mitochondrial biogenesis, although no differences were observed in VO2Max 753	

compared to placebo (183). Similarly, VitC hampered running time to exhaustion in 754	

rats, perhaps a result of impaired mitochondrial biogenesis (93). Others have reported 755	

no alterations in EE-induced adaptations (measured as maximal O2 consumption, 756	

power output and workload at lactate threshold) following antioxidant 757	

supplementation (272). Differences in the antioxidant dosing regimes might explain 758	

some divergent findings between studies (183). Thus, whilst VitC and VitE are vital 759	

for maintaining health, the benefits of supplementation are debatable and are likely to 760	

depend on the age group deficiency status. The poor bioavailability described in 761	

several studies may further impact any benefits of supplementation (21).  762	

 763	

Currently, it is difficult to conclude whether antioxidant supplementation is beneficial 764	

or detrimental for muscle mass, protein metabolism and performance/adaptation. 765	

Close and colleagues highlighted that confusion and misguided conclusions are often 766	

drawn due to inappropriate methodological techniques (53). As an example, the lipid 767	

peroxidation marker, thiobarbituric acid reactive substances (TBARS), can be the 768	

result of non-redox related sources and is thus no longer recommended for use as an 769	

oxidative stress marker (81), yet is often published in the context of antioxidant 770	
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supplementation (111, 155, 157). It is believed that diets rich in fruits and vegetables 771	

as opposed to large supplemental doses of antioxidants are preferable since no 772	

investigations to date support attenuations in adaptations to training in response to 773	

fruits and vegetables, which have naturally occurring antioxidants (53).  774	

 775	

Emerging Nutraceuticals  776	

Ursolic acid 777	

Despite the paucity of research at present, other novel nutraceuticals have gained 778	

recent attention for their potential to promote muscle mass, protein metabolism and/or 779	

exercise adaptations. For example, the naturally occurring phytochemical ursolic acid 780	

(UA) found in apple peel has drawn attention since UA supplemented mice gained 781	

7% muscle weight (142), suggesting UA may be capable of promoting muscle 782	

hypertrophy (71, 124, 141, 142). UA-induced hypertrophic effects are proposed to be 783	

due to the attenuation of atrophy-related genes MuRF1 and atrogin-1, and the up-784	

regulation in IGF gene expression (142). Contrary to this, UA incubations in cell 785	

cultures was reported to inhibit leucine-stimulated mTORC1 signaling by inhibiting 786	

mTORC1 localization to the lysosome (180), a key step in AA-induced anabolic 787	

signaling (207). Research is warranted to detail the effects of UA on muscle 788	

metabolism in humans.  789	

 790	

With regards to exercise interactions, UA injection following RE in rats stimulated 791	

p70S6K1 at 1h and was maintained 6h later, which began the descent to baseline in 792	

the exercise only group, reflecting prolonged mTORC1 activity and thus anabolic 793	

potential when RE is combined with UA (177). Despite an unclear mechanism, the 794	

authors speculated that IGF-I may contribute to the UA-induced p70S6K1 activation, 795	
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and previous work supports this hypothesis (142). Contrary, data in humans (not in 796	

the context of UA) shows no change in IGF-I but increased anabolic signaling after 797	

acute RE (28). In RE trained males, RET 6 x/week (at 60-80% of 1-RM) for 2 months 798	

combined with 450mg/day UA improved leg strength but had no effect on lean body 799	

mass, although RET alone also had no effects on lean body mass (12). This may be 800	

due the fact that the participants had >3 years RET experience, and hypertrophic 801	

responses predominate in the early stages of RET (29). To the author’s knowledge, no 802	

evidence exists regarding UA supplementation combined with EE. An important issue 803	

to consider is the low and variable bioavailability of UA following oral ingestion, 804	

likely due to its lack of solubility in aqueous solutions (113). This could markedly 805	

impact its potential as a nutraceutical. However, recent efforts have been made to 806	

improve the bioavailability of UA and other triterpenoids by, for instance, using nano-807	

liposomes to aid solubility (271). The varied and low bioavailability of UA in humans 808	

is demonstrated by the lack of UA content in some participants following a 1g oral 809	

dose, and in those that did display UA content, it was only observed up to 12h post 810	

consumption (113). Additional findings show oral UA ingestion (3g) lead to increased 811	

plasma UA 2 and 6h post-exercise (50). As such, the true bioavailability of UA in 812	

response to time and dose should be investigated further.  813	

 814	

Phosphatidic acid 815	

Phosphatidic acid (PA) is a diacyl-glycerophospholipid found endogenously in 816	

mammalian cell membranes that can be obtained exogenously from raw cabbage 817	

(231). Both endogenous and exogenous PA are believed to positively influence 818	

muscle protein metabolism, whereby endogenous PA can be increased by RE and 819	

directly binds to mTORC1 influencing MPS. Exogenous PA indirectly stimulates 820	
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mTORC1 activation (77, 165) via extracellular-signal regulated protein kinase 821	

(ERK) dependent (262), and phosphatidylinositol-3-kinase (PI3K) independent 822	

(176) mechanisms, and may also attenuate MPB via attenuation of atrophy-related 823	

genes (210). Exogenous PA in cultured muscle cells also prevented atrophy in the 824	

presence of the atrophy-inducing substances tumor necrosis factor alpha (TNF-α) 825	

and dexamethasone (122). Recently, acute PA supplementation in rodents tended to 826	

increase MPS in the fasted state, however, PA blunted the whey protein induced rise 827	

in MPS (165). Possibly the addition of PA to whey alters the pathways of mTORC1 828	

activation thus shifting peak MPS (165); research is needed to understand the 829	

signaling responses of PA alone versus PA plus whey. In a human case study, orally 830	

ingested PA metabolized into lysophosphatidic acid (LPA) and glycerophosphate, 831	

increased plasma PA and LPA 30 minutes post-ingestion (of 1.5g PA), which 832	

plateaued at 1-3h and remained elevated above baseline at 7h (197). Thus, it seems 833	

PA is bioavailable in humans, although beyond 7h post-ingestion the bioavailability 834	

is unknown and further studies with a larger cohort are needed to determine the true 835	

bioavailability of PA. PA supplementation (750mg daily) combined with 2 months 836	

supervised whole body RET in RE trained males found increased lean body mass 837	

and cross sectional area compared to the placebo group (129). Conversely, others 838	

have shown non-significant increases (+2.6%) in lean body mass, despite utilizing a 839	

similar RET and supplementation programme (115). The differential findings 840	

between these studies may be due to the fact that training was unsupervised in the 841	

later study. To our knowledge no data currently exists assessing the interactions of 842	

PA plus EE.  843	

 844	

Combined nutraceuticals  845	
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Although not the focus of this review, it is worth speculating that combining 846	

nutraceuticals may provide multiple benefits to skeletal muscle health or potentiate 847	

skeletal muscle health benefits in response to exercise. Consequently, some studies 848	

have investigated the potential of combined nutritional ‘cocktails’. For example, a 849	

supplement containing PA, HMB and VitD in combination with 2 months RET led 850	

to greater gains in lean body mass and strength compared to the placebo group, 851	

providing support that the combined supplement possessed anabolic properties (73). 852	

The combination of VitD, leucine and whey twice daily in tandem with RET 3 853	

x/week for 13 weeks prevented the loss of appendicular muscle mass during 854	

intentional weight loss in obese males and females (243). The caveat with 855	

implementing combined nutritional supplementation is that it is difficult to attribute 856	

changes in the endpoint to the responsible individual/ or combination of nutrients, 857	

unless rigorous study designs are implement with adequate control groups.  858	

 859	

Conclusion and Future Directions 860	

While it is extremely unlikely that a single nutraceutical will prove to be a ‘magic 861	

bullet’, it is clear that certain nutraceuticals, under certain conditions, do indeed 862	

possess ergogenic potential. Of the nutrients discussed herein, strong evidence exists 863	

for leucine, HMB and Cr for muscle mass; leucine and HMB for protein metabolism; 864	

carnitine for fuel metabolism and leucine, HMB, carnitine, Cr, nitrates and β-alanine 865	

for athletic (strength or endurance) performance. Further empirical in vivo evidence is 866	

required to firmly establish the currently emerging roles of VitD, UA and PA for 867	

promoting muscle mass and n-3 PUFA, UA and PA for muscle protein metabolism. 868	

This review highlights: 1) the need for better controlled longer duration human 869	

studies which investigate the role of individual nutrients on muscle mass, protein/ fuel 870	
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metabolism and indices of exercise performance/ adaptation, 2) the lack of in vivo 871	

“mechanistic” studies, and 3) the need to determine the bioavailability of emerging 872	

nutrients.   873	
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Figure 1. Proposed metabolism and mechanisms of action for nutrients/ nutraceuticals.  1816	

→ represents activation; � represents purported activation; --| represents purported suppression; ? unknown; 4EBP1 4E binding protein-1; AA 1817	

amino acids; AMPK 5' AMP-activated protein kinase; AO antioxidants; ATP adenosine triphosphate; CARNS carnosine synthase; CHO 1818	

carbohydrate; CK creatine kinase; EDG-2 endothelial differentiation gene; eEF2 eukaryotic elongation factor 2; eIF4E eukaryotic initiation 1819	

factor 4E; HMB β-hydroxy-β-methylbutyrate; MPS muscle protein synthesis; mTORC1 mammalian target of rapamycin complex 1; NO3
-; 1820	

nitrate; NO2
- nitrite; NO nitric oxide; OCTN2 organic cation transporter 2; PA phosphatidic acid; PAT1 proton-coupled amino acid transporter 1; 1821	

PEPT2 peptide transporter 2; PGC-1α peroxisome proliferator-activated receptor-γ coactivator-1α; RPS6 ribosomal protein S6; SLC6AS Solute 1822	

Carrier Family 6 Member 8; TauT taurine transporter; UA ursolic acid; VDR vitamin D receptor; VDRE vitamin D response elements; VitD; 1823	

vitamin D; VitD3; active vitamin D.  1824	

 1825	
 1826	
 1827	
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Table 1. Summary of studies in humans demonstrating positive, negative or negligible effects of established and emerging macronutrients, 1828	

micronutrients and nutraceuticals on skeletal muscle mass, metabolism and performance with or without exercise 1829	

(INSERT TABLE HERE) 1830	
 1831	
↓ decrease, ↑ increase,  > larger,  ←→ no change, 1-RM: one repetition maximum; AA: amino acids; Arg: arginine; AS: antioxidant supplement; 1832	
β-ala: beta-alanaine; BRJ: beetroot juice; BW: body weight; CAR: carnitine; CHO: carbohydrate; CON: control; CONC: concentric; CPK: 1833	
creatine phosphokinase; CR: creatine; CSA: cross-sectional area; d: day/s; EAA: essential amino acids; ECC: eccentric; EE: energy expenditure; 1834	
EET: endurance exercise training; F: females; FFM: fat free mass; FO: fat oxidation; FSR: fractional synthesis rate; g: grams; h: hours; HIIT: 1835	
high intensity interval training; HMB: β-hydroxy-β-methylbutyrate; kg: kilograms; km: kilometer; LBF: leg blood flow; LBM: lean body mass; 1836	
LCA-CoA: long-chain acyl-CoA; LDH: lactate dehydrogenase; LEU: leucine; n-3 PUFAs: n-3 polyunsaturated fatty acids; NEAA: non-essential 1837	
amino acids; M: males; Max: maximal; MBV: microvascular blood volume; Mg: milligrams; Min: minute; ml: milliliter; mmol: milimolar; 1838	
MPO: mean power output; MPB: muscle protein breakdown; MPS: muscle protein synthesis ; mRNA: messenger ribonucleic acid; mTOR: 1839	
mammalian target of rapamycin; NaNO3: sodium nitrate; NS.: non-significant; O: old; O2: oxygen; OBLA: onset of blood lactate accumulation; 1840	
p70S6K1: ribosomal s6 kinase 1; PDH: pyruvate dehydrogenase; PLA: placebo; Pmax: maximal power output; PPO: peak power output; PRO: 1841	
protein; PWCFT: Physical working capacity at the onset of neuromuscular fatigue threshold; Reps: repititions ; RE: resistance exercise ; RET: 1842	
resistance exercise training; TART: tartrates; TC: total carnitine; TT: time trial; TTE: time to exaution; TUG: timed up and go; TWD: total work 1843	
done; VitD: vitamin D; VT: ventilatory thresehold; Wk/s: week/s; Y: young; yr: year; Yo-Yo IR1: Yo-Yo intermittent recovery level 1 1844	
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Author Classification Subjects Nutrient Exercise/Condition Results Comment Endpoint 

Macronutrients 
Bennet 1989 

 
Macronutrient 7 M 

 
Mixed AA 

 
− 
 

↑ MPS 
 

AA alone 
maximally 

stimulate MPS 
 

Metabolism 

Smith 1998 
 

Macronutrient 23 M 
 

EAA 
NEAA 

− 
 

↑ MPS 
←→ 

 

EAA driver of 
increased 

MPS 
 

Metabolism 

Casperson 2012 
 

Macronutrient 8 M 
 

12g/d LEU 
13d 

− 
 

↑ MPS 
↑ mTOR signalling 

 

LEU increases 
MPS 

 

Metabolism 

Wall 2013 
 

Macronutrient 24 M 
 

n=12: 20g 
PRO  

n=12: 20g 
PRO + 2.5g  

LEU 

− 
 

> ↑ MPS following 
PRO+LEU vs. PRO 

LEU co-
ingestion with 

PRO 
potentiates 

MPS 

Metabolism 

Leucine Metabolites 

Nissen 1996 Nutraceutical 28 M 
 

n=15: 3g/d 
HMB 

n=13: PLA 
7wks 

 

RET 6*wk  
7wks 

 

HMB ↑ LBM > 
placebo 

HMB ↑ strength 
 
 

HMB plus 
RET 

potentiates 
gains in LBM 

 

Mass 
Performance 



Wilkinson 2013 
 

Nutraceutical 15 M 
 

n=8: 3.42g 
HMB (2.42g 
pure HMB) 
n=7: 3.42 g 

LEU 
 
 

− 
 

HMB & LEU ↑ MPS, 
HMB ↑ mTOR 

signalling > LEU, 
HMB ↓ MPB 

HMB 
promotes ↑ 
MPS and ↓ 

MPB 

Metabolism 

Deutz 2013 
 

Nutraceutical 4 M  
15 F 

 

n=11: 3g/d 
HMB 

n=8: PLA 
 

10d bed rest HMB ←→ LBM 
PLA ↓ LBM 

 

HMB 
preserves 

muscle mass 
during disuse 

 

Mass 

Baier 2009 Nutraceutical 38 M 
39 F 

n=40: 2 or 3g 
HMB, 1.5 or 
2.25g lysine, 

5 or 7.5 g 
arginine & 

0.1g ascorbic 
acid 

n=37: PLA 
1yr 

- ↑ FFM AA cocktail 
enhanced 

muscle mass 

Mass 

Panton 2000 Nutraceutical 39 M  
36 F 

n=36: HMB 
(3g/d) 

n=39: PLA 

RET 3*wk  
4 wks 

↑ strength > PLA HMB 
improved 

muscle 
function 

Performance 

Wilson 2014 Nutraceutical 20 M n=11: HMB 
(3g/d) 

n=9: PLA 

Periodised RET  
12 wks 

↑ strength, power and 
LBM vs. PLA 

HMB 
enhances 
muscle 

function & 
hypertrophy 

Mass 
Performance 



Vukovich 2001 Nutraceutical 8 M 
 

n=8: 3g/d 
HMB  

n=8: 3g/d 
LEU 

n=8: 3g/d 
PLA 
2wks 

 

- HMB ↑ time to reach 
VO2peak  

HMB & LEU ↑ 
OBLA 

HMB 
improves 
aerobic 

performance 

Performance 

Miramonti 
2016 

Nutraceutical 22 M  
15 F 

n=14: 3g/d 
HMB 

n=14: 3g/d 
PLA 

n=9: CON 
4 wks 

 

HIIT 3*wk 
4 wks 

↑ PWCFT following 
HMB > PLA & CON 

HMB & HIIT 
improves 
aerobic 

performance 

Performance 

Knitter 2000 Nutraceutical 5 M 
8 F 

n=8: 3g/d 
HMB 

n=5: PLA 
6 wks 

 

Running >30 
km/wk 

Attenuated ↑ in CPK 
& LDH post 20 km 
run following HMB 

HMB 
ameliorates 
aspects of 

muscle 
damage 

Performance 

Creatine 

Greenhaff 1993 
 

Nutraceutical 9 M 
3 F 

 

n=6: 20g/d 
CR + 1g/d 
glucose/ 

n=6: 24g/d 
glucose 

5d 

5 x 30 max 
voluntary 

contractions, before 
and after 

supplementation 

CR ↓ peak 
torque decline 

 

CR sustains 
performance 

 

Performance 

Birch 1994 Nutraceutical 14 M n=7: CR 
20g/d 

n=7: PLA 
5d 

3 x 30 sec max 
cycling sprints 

CR ↑ PPO, MPO and 
total work output 
during 1st sprint 

CR increases 
aspects of 

power output 

Performance 
 



Earnest 1995 Nutraceutical 8 M n=4: 5g/d CR 
n=4: PLA 
2-4 wks 

3 x 30 sec max 
cycling  

1-RM test 
70% of 1-RM until 

fatigue 
 

CR ↑ total anaerobic 
work during cycling 
sprints, ↑ BW, ↑ total 

lifting volume 
 

CR enhances 
muscle 

function  

Mass & 
Performance 

 

Cooke 1995 Nutraceutical 12 M n=6: 5g CR + 
1g glucose 
n=6: PLA 

5d 
 

Max cycling sprint ←→ in power 
indices 

CR does not 
affect power 

output 

Performance 
 

Mujika 1996 Nutraceutical 11 M 
9 F 

n=10: 20g/d 
CR 

n=10: PLA 
1 wk 

 

20, 50 & 100 m 
max swim 

No difference in race 
time between groups 

CR has no 
ergogenic 
benefits on 

sprint 
performance 

Performance 
 

Snow 1998 Nutraceutical 8 M n=4: 30g/d 
CR + 30g/d 

dextrose 
n=4: PLA  

5d 

20 sec max cycling  CR did not affect 
power indices 

CR has  no 
ergogenic 
benefits on 

sprint 
performance   

Performance 

Thompson 1996 Nutraceutical 10 F n=5: 2g/d CR 
n=5: PLA 

6 wks 
 

6 wks swimming 
(part of a swim 

team)  

←→ in lean mass, 
resynthesis of PCr or 

performance time 

CR has no 
effect on body 
composition, 
anaerobic or 

aerobic 
performance 

Mass & 
Performance 

Cooke 2009 Nutraceutical 14 M n=7: 0.1-
0.3g/kg/d CR 

+ CHO 
n=7: CHO 

19d 

4 sets, 10 ECC reps 
@ 120% of CONC 

1-RM for 3 leg 
exercises  

CR+CHO ↑ 
isokinetic & 

isometric strength 
during recovery vs. 

CHO  

CR improves 
functional 
recovery 

Performance 



Volek 1999 
 

Nutraceutical 19 M n=10: 25 g/d 
1 wk, 5 g/d 11 

wks CR 
n=9: PLA 

 

RET 12 wks 
 

> ↑ in strength, CSA, 
following CR vs. 

PLA 

CR potentiates 
RET-induced 

muscle 
adaptations  

Mass & 
Performance 

Brose 2003 Nutraceutical 15 M  
13 F 

 

n=14: 5g/d  
CR + 2g 
dextrose 
n=14: pla 

RET 3*wk, 14 wks > ↑ in FFM and  
strength  following  

CR vs. PLA 

CR potentiates 
RET-induced 

mass and 
functional 

adaptations 

Mass & 
Performance 

Carnitine 

Stephens 2006 Nutraceutical 7 M n=7: 5h CAR 
infusion (15 

mg/kg prime, 
10 mg/kg.h 
constant) 
n=7: PLA 

- CAR ↑ muscle 
glycogen, LCA-CoA 
& ↓ PDH complex 
activity, lactate vs. 

PLA 

CAR can 
inhibit CHO 

oxidation 

Fuel 
Metabolism 

Wall 2011 Nutraceutical 14 M n=7: 2 g CAR 
+ 80 g CHO 

n=7: 80 g 
CHO 

2*d, 24 wks 

30 mins cycling @ 
50% VO2max, 30 

mins at 80% 
VO2max, 30 min all-

out 

@ 50% VO2max 
carnitine ↓ glycogen 

use 
 

CAR spares 
muscle 

glycogen 

Metabolism 
& 

Performance 

Stephens 2013 Nutraceutical 12 M n=6: 1.36 
CAR + 80g 

CHO 
n=6: 80g 

CHO 
2*d, 12 wks 

30 min cycling @ 
50% VO2max 

CAR ↑ LCA-CoA 
↑ fat mass in CHO 

CAR 
prevented fat 

mass gain 

Metabolism 



Abramowicz 
2005 

Nutraceutical 6 M 
6 F 

n=12: 1*3g 
CAR + TART 

n=12:  3g/d 
CAR + 

TART, 14d 
n=12: PLA, 

14d 
 
 

60 min cycling @ 
60% VO2max 

CAR + TART for 
14d ↑ CHO oxidation 

in M vs. PLA 
No effect on FO 

CAR & TART 
promote CHO 

oxidation 
during 

exercise 

Metabolism 

Broad 2005 Nutraceutical 15 M n=15: 3g/d 
CAR + TART 

n=15: PLA 
4 wks 

90 min cycling @ 
65% VO2max, 20 km 

TT 

FO and CHO similar 
between CAR & 
TART vs. PLA 
during exercise 

TT duration ↓ in PLA 
only  

 

CAR & TART 
enhance 
energy 

metabolism or  
endurance 

performance  

Energy 
Metabolism 

& 
Performance 

n-3 PUFAs 

Smith 2011 Nutraceutical 5 M 
4 F 

4g/d n-3 
PUFAs  
8 wks 

− 
 

↑ MPS 
& ↑ mTOR signalling 

during 
hyperinsulinaemia-

hyperaminoacidaemia 

n-3 PUFAs 
augments 

acute anabolic 
responses 

Metabolism 

Smith 2011 Nutraceutical 15 M 
29 F 

 

n=29: 4 g/d n-
3 PUFAs 

n=15: corn oil  
6 months 

− 
 

n-3 PUFAs ↑ mass & 
↑ strength vs. corn oil 

n-3 PUFAs 
promotes 

muscle growth 

Mass 

Huffman 2004 Nutraceutical 7 M n-3 PUFAs 4 
g/d  

3 wks 
 

60 mins running @ 
60% VO2max  

↑ fat EE Chronic  n-3 
PUFAs 

promote fat 
oxidation 

during 
exercise 

Metabolism 



Logan 2015 Nutraceutical 24 F n=12:  2g/d 
EPA + 1g/d 

DHA 
n=12: PLA 12 

wks 

Pre & post exercise 
testing 

n-3 PUFAs ↑ LBM, ↑ 
rate of FO & ↓ TUG 

n-3 PUFAs 
promotes fat 
metabolism, 
muscle mass 
and function 

Mass, Fat 
Metabolism 

and 
Performance 

Smith 2015 Nutraceutical 10 M 29 
F 

N=29: 
1.86g/d EPA 

+ 1.5 g/d 
DHA 

N=25: PLA 
24 wks 

- n-3 PUFAs ↑ muscle 
volume & strength 

vs. PLA 

n-3 PUFAs 
preserve 

muscle mass 
and function 

Mass & 
Performance 

Rodacki 2012 Nutraceutical 45 F n=15: 400 g/d 
EPA + 300g/d 

DHA 90d + 
RET 

n=15: 400 g/d 
EPA + 300g/d 
DHA 150d + 

RET 
N=15: RET  

RET 3*wk, 12 wks > ↑ in peak torque 
following n3-PUFAs 

vs. RET  

n3-PUFAs 
potentiate 
strength 

adaptations to 
RET 

Strength 
Performance 

McGlory 2016 Nutraceutical 19 M n=10: 5g/d 
n3-PUFAs 
n=9: PLA  

8 wks 

Acute RE 3 sets, 10 
reps @ 70% 1-RM 

Rest and exercise 
MPS similar 

following n3-PUFAs 
vs. PLA 

↑ p70S6K1 after RE 
in PLA only 

n3-PUFAs 
does not 

potentiate RE-
induced 

metabolic 
responses 

Metabolism 

Delarue 1996 Nutraceutical 4 M 
1 F 

n=5: 6g/d n-3 
PUFAs 

n=5: PLA  
3 wks 

- n-3 PUFAs ↑ FO & ↓ 
CHO oxidation 

n-3 PUFAs 
manipulates 

energy 
metabolism 

Energy 
Metabolism 



Delarue 2003 Nutraceutical 6 M n=6: 6g/d n-3 
PUFAs 

n=6: PLA  
20d 

Acute 90 min 
cycling @ 60% max 

O2 output 

n-3 PUFAs tended to 
↑ FO and ↓ CHO 
oxidation > PLA 

n-3 PUFAs 
might 

manipulate 
energy 

metabolism 
during 

exercise 

Energy 
metabolism 

Nitrates/Blood flow 
Tang 2011 Nutraceutical 8 M n=8: 10g 

EAA + 10g 
Arg 

n=8: PLA 

Unilateral acute RE, 
5 sets 8-10 reps 

↑ in blood flow 
and MPS 

following RE 
similar in Arg vs. 

PLA 

Arg has no 
additive 

effects on 
muscle blood 
flow or MPS 

Protein 
Metabolism 

Churchward-
Venne 2014 

Nutraceutical 21 M n=7: 45g 
Whey 

n=7: 10g 
citrulline + 
15g whey 
n=7: 10g 

NEAA + 15g 
whey 

 

Acute RE: 
6x8-10 reps @ 80% 

10-RM 
knee extension 

No ↑ in MPS, 
blood flow or 

perfusion 
following 

citrulline+whey 
vs. NEAA+whey 

No additive 
effect of 

citrulline on 
metabolism 

Protein 
Metabolism 

Phillips 2016 Nutraceutical 20 M n=10: 350 mg 
cocoa 

flavanol 
n=10: CON 

- ↑ LBF and MBV 
following cocoa 

flavanol 
←→ MPS 

following cocoa 
flavanol vs. CON 

Cocoa 
flavanols 
improve 

vascular but 
not MPS 

responses to 
nutrition 

Protein 
Metabolism 

Lansley 2011 Nutraceutical 9 M n=9: 500 ml 
BRJ 

n=9: 500 ml 
PLA 

4 & 16.1 km 
cycling TT 

↑ TT performance Nitrates 
improve TT 
performance 

Performance 

Larsen 2007 Nutraceutical 9 M n=9: 0.1mmol 
kg/d NaNO3 
n=9: PLA 

3d 

Sub-max and max 
cycling 

NaNO3 ↓VO2 at sub-
max vs. PLA 

NaNO3 
reduced O2 
cost during 

sub-max 
exercise 

Performance 



Bailey 2009 Nutraceutical 8 M n=8: 500ml/d 
BRJ 

n=8: PLA 
6d 

Moderate & intense 
exercise 

BRJ ↓VO2 during 
moderate exercise vs. 

PLA 
BRJ ↑ TTE during 

intense exercise 

BRJ can 
reduce  O2 

cost & 
improve 
exercise 
tolerance 

Performance 

Muggeridge 
2014 

Nutraceutical 9 M n=9: 1*70ml 
BRJ 

n=9: PLA 

15 min steady state, 
5 min rest, 16.1 km 

TT 

BRJ ↓VO2 during 
moderate exercise vs. 

PLA 
TT performance was 
faster following BRJ 

BRJ enhances 
endurance 

performance 

Performance 

Wylie 2013 Nutraceutical 14 M n=14: 490ml 
BRJ over 30h 

n=14: PLA 

Yo-Yo IR1 BRJ ↑ Yo-Yo IR1 
performance vs. PLA 

BRJ improved 
high intensity 

running 
performance 

Performance 

Arnold 2015 Nutraceutical 10 M n=10: 70 ml 
BRJ 

n=10: PLA 

Incremental 
treadmill running 

+ 10km TT 

BRJ did not change 
TTE during 

incremental exercise 
or time to completion 

in the TT vs. PLA 

BRJ does not 
enhance 

endurance 
running 

Performance 

Cermak 2012 Nutraceutical 
 

20 M n= 20: 1*140 
ml BRJ 

n=20: PLA 

1h cycling TT TT performance & 
power output similar 

between BRJ vs. 
PLA 

BRJ does not 
improve 

endurance 
performance 

Performance 

Wilkerson 2012 Nutraceutical 
 

8 M n=8: 1*500ml 
BRJ 

n=8: PLA 

50 mile cycling TT No difference 
between BRJ vs. 

PLA for completion 
time & power output 
Trend for BRJ ↓VO2 

BRJ did not 
improve TT 
performance 

Performance 

β-alanine and Carnosine 

 
Kendrick 2008 Nutraceutical 26 M n=13: 6.4g/d 

β-ala 
n=13: PLA 

4 wks 

RET 4*wk, 10 wks Similar ↑ in 
strength & body 

mass 

No additive 
effect of β-ala 
on strength, 

mass 

Mass & 
Performance 



Hill 2007 Nutraceutical 25 M n=13: 4-
6.4g/d β-ala 
n=12: PLA 

- 4 & 10 wks of β-
ala ↑ TWD 

during cycling 

β-ala 
improves 
exercise 
capacity 

Performance 

Derave 2007 Nutraceutical 15 M n=8: 4.8g/d β-
ala 

n=7: PLA  
4-5wks 

Track & field 
~5*wk 

β-ala ↑ knee 
torque during 

repetitive 
exercise bouts 

β-ala 
attenuates 

fatigue 

Performance 

Stout 2007 Nutraceutical 22 F n=11: 3.2-
6.4g/d β-ala 
n=11: PLA  

4 wks 
 

- β-ala ↑ PWCFT, 
VT & TTE 

β-ala delays 
the onset of 

neuromuscular 
fatigue 

Performance 

VitD 
Agergaard 

2015 
Micronutrient 17 M, Y 

17 M, O 
n=7 Y, 7 O: 
1920 IU/d 
VitD + 800 

mg/d calcium 
n=10 Y, 10 

O: 800 mg/d 
calcium 
16 wks 

RET 3*wk @ 65-
85% 1-RM, 12 wks 

Fibre type IIa 
%age > ↑ & 
myostatin 

mRNA > ↓ in Y 
VitD vs. Y pla 

No difference in 
the ↑ of CSA and 
strength in VitD 

vs. calcium 

But no 
additive effect 

on mass or 
strength 

Mass and 
Performance 

Carrilo 2013 Micronutrient 11 M 
12 F 

n=10: 4000 
IU/d VitD  
n=13: PLA 

RET 3*wk @ 70-
80% 1-RM, 3 

months 

←→ LBM 
following VitD 

or PLA 
↑ peak power 

following VitD 

VitD has no 
impact on 

mass but can 
improve 

muscle power 

Mass & 
Performance 

Bunout 2006 Micronutrient 10 M 
86 F 

n=24: 800 
mg/d calcium 

+ 400 IU/d 
VitD  

n=24: 800 
mg/d calcium  

n=24: 800 
mg/d calcium 

RET 2*wk, 9 
months 

> improvement 
in TUG in VitD 
+ RET vs. RET 

VitD enhances 
muscle 

function 

Performance 



+ 400 IU/d 
VitD + RET 
n=24: 800 

mg/d calcium 
& RET 

Ceglia 2013 Micronutrient 21 F 4000 IU/d 
VitD  

4 months 

− 
 

↑ type I/II CSA VitD increases 
muscle fibre 

size 

Mass 

VitC and VitE 
Bobeuf 2010 Micronutrient 23 M, 

25 F 
n=11: AS 

(1000 mg/d 
VitC & 600 
mg/d VitE) 
n=12: PLA 
n=13: RET 

n=12: 
AS+RET 

 

RET 3*wk @ 80% 
1-RM, 6 months 

> ↑ FFM in 
AS+RET vs. 
PLA, RET or 

AS. 

AS potentiates 
RET-induced 
gains in FFM 

Mass 

Bjørnsen 2015 Micronutrient 34 M n=17: AS 
(1000 mg/d 
VitC + VitE 
235 mg/d) 
n=17: PLA 

 

RET 3*wk, 3 
months 

> ↑ in total LBM 
and muscle 

thickness in PLA 
vs. AS 

AS blunt ↑ in 
total LBM 

Mass 

Paulsen 2014 Micronutrient 21 M 
11 F 

n=17:  AS 
(1000 mg/d 
VitC + 235 
mg/d VitE) 
n=15: PLA 

RET 4*wk, 10 wks > ↑ p38 MAPK, 
p70S6K, ↑ 

ERK1/2 in PLA 
vs. AS 

Similar changes 
in FSR, CSA & 

total LM 

AS altered 
protein 

signalling but 
not muscle 

hypertrophy 

Mass & 
Metabolism 

 

Labontè 2008 Micronutrient 27 M 34 
F 

600 mg VitE 
+ 1000 mg 

VitC  
6 months 

RET 3*wk, 6 
months 

> ↑ FFM 
compared to 
RET alone 

AS potentiate 
FFM gains 

Mass 
 
 
 



Bobeuf 2011 Micronutrient 27 M 
30 F 

n=11: AS 
(1000 mg/d 
VitC + 600 
mg/d VitE) 
n=12: PLA 
n=13: RET 

n=12: 
AS+RET 

 

RET 3*wk @ 80% 
1-RM, 6 months 

Similar ↑ in FFM 
and strength in 
AS+RET vs. 

RET 

AS do not 
maximize 
strength or 
mass gains 

Mass & 
Performance 

Paulsen 2014 Micronutrient 26 M 
28 F 

n=27: AS 
(1000 mg/d 
VitC + 600 
mg/d VitE) 
n=27: PLA 

EET 3-4*wk, 11 
wks 

Similar ↑ in 
VO2max 

←→ COX4 and 
PGC-1α 

AS hampered 
mitochondrial 

cellular 
adaptations 

Performance 

Yfanti 2010 Micronutrient 21 M n=11: AS 
(500 mg/d 

VitC + VitE 
400 IU/d)  

n=10: PLA 
16 wks 

EET 5*wk, 12 wks Similar ↑ in  
VO2max, Pmax, 

workload at LT, 
muscle glycogen, 
muscle enzyme 

activity 

AS have no 
effect on 

adaptation to 
EET 

Performance 

Gomez-
Cabrera 2008 

Micronutrient 14 M n=5: VitC 
1g/d + EET 
n=9: EET  

EET 3*wk 65-80% 
of  VO2max, 8 wks 

Similar ↑ in  
VO2max 

VitC  has no 
effect on 

adaptation to 
EET 

Performance 

Ursolic Acid 
Bang 2014 Nutraceutical 16 M n=9: 450 

mg/d UA 
n=7: PLA 

RET 6*wk @60-
80% 1-RM, 8 

weeks 

> ↑ strength vs. 
PLA 

←→ LBM in 
UA or PLA 

 

UA promotes 
gains in 

strength but 
not LBM 

Performance 
 
 
 

 
Phosphatidic Acid 

Joy 2014 Nutraceutical 28 M n=14: 750 
mg/d PA 

n=14: PLA 

RET 3*wk, 8 wks > ↑ LBM, 
CSA & 

strength vs. 
PLA 

PA potentiates 
RET-induced 

mass and 
strength gains 

Mass & 
Performance 

 
 
 



	 Hoffman 2012 Nutraceutical 16 M n=7: 750 mg 
PA 

n=9: PLA 

RET 4*wk @ 70% 
1-RM, 8 wks 

NS. ↑ LBM 
& strength 

PA did not 
potentiate 

RET-induced 
gains in mass 

or strength 

Mass & 
Performance 
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