1	"Nutraceuticals" in relation to human skeletal muscle and exercise
2	
3	CS Deane ^{1,2,3} , DJ Wilkinson ¹ , BE Phillips ¹ , K Smith ¹ , T Etheridge ³ , PJ Atherton ¹
4	
5	¹ MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical,
6	Metabolic and Molecular Physiology, University of Nottingham, Royal Derby
7	Hospital, UK; ² Faculty of Health and Social Science, Bournemouth University, UK;
8	³ Department of Sport and Health Science, College of Life and Environmental
9	Sciences, University of Exeter, UK
10	
11	Running Title: Nutrients, muscle and exercise
12	
13	Correspondence to:
14	Professor. Philip J Atherton
15	University of Nottingham
16	MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research
17	Division of Clinical, Metabolic and Molecular Physiology
18	School of Medicine
19	Royal Derby Hospital
20	Uttoxeter Road
21	Derby, DE22 3DT, UK
22	Email: philip.atherton@nottingham.ac.uk

23 Abstract

24 Skeletal muscles have a fundamental role in locomotion and whole body metabolism. 25 with muscle mass and quality being linked to improved health and even lifespan. 26 Optimising nutrition in combination with exercise is considered an established, 27 effective ergogenic practice for athletic performance. Importantly, exercise and 28 nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with ageing and numerous clinical conditions e.g. 29 30 cancer cachexia, COPD and organ failure, via engendering favourable adaptations 31 such as increased muscle mass and oxidative capacity. Therefore, it is important to 32 consider the effects of established and novel effectors of muscle mass, function and 33 metabolism in relation to nutrition and exercise. To address this gap, in this review we 34 detail existing evidence surrounding the efficacy of a non-exhaustive list of 35 macronutrient, micronutrient and "nutraceutical" compounds alone and in 36 combination with exercise in relation to skeletal muscle mass, (protein and fuel) 37 metabolism and exercise performance (i.e. strength and endurance capacity). It is long 38 established that macronutrients have specific roles and impacts upon protein 39 metabolism and exercise performance i.e. protein positively influences muscle muscle 40 mass and protein metabolism, whilst carbohydrate and fat intakes can influence fuel 41 metabolism and exercise performance. Regarding novel nutraceuticals, we show the 42 following ones in particular may have effects in relation to: 1) muscle mass/protein 43 metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid and 44 phosphatidic acid, and 2) exercise performance: (i.e. strength or endurance capacity); 45 hydroxyl β -methylbutyrate, carnitine, creatine, nitrates and β -alanine.

46 Key words: nutrients, metabolism, exercise, skeletal muscle, nutraceuticals

48 Introduction

49 Skeletal muscle represents the largest organ in the body, comprising ~40% of whole 50 body mass (123). The functions of skeletal muscle extend beyond the widely 51 recognized role of locomotion, serving as the bodies' largest tissue for glucose storage 52 and utilization (101, 121) and a primary site of lipid metabolism (104). Muscle also 53 stores ~40% of total body amino acids (AA), that can act as a source of fuel and an 54 AA substrate for other tissues in times of illness or fasting via release of glucogenic, 55 ketogenic AA (264). Changes in muscle mass are regulated by dynamic turnover of 56 the muscle protein pool (~1-1.5 %/day) with skeletal muscle mass remaining constant 57 when muscle protein synthesis (MPS) and muscle protein breakdown (MPB) are in 58 balance (8). During situations of muscle growth, (e.g. resistance exercise training 59 (RET) combined with AA substrate), net MPS exceeds MPB (8). Conversely, net 60 MPB is greater than MPS in conditions of muscle loss (e.g. bed rest, cachexia and 61 sarcopenia (75)); in humans such wasting conditions are typically predominantly due 62 to reduced MPS under fasted and/or fed conditions (191)). In addition to the 63 regulation of muscle and function being clinically relevant, optimal strategies to 64 promote growth, maintenance of muscle mass and exercise performance (i.e. strength 65 and endurance capacity) are of great interest to performance scientists. Therefore, a 66 major area of interest surrounds the role of macronutrients, micronutrients and 67 nutraceuticals that influence muscle metabolism and function.

68

The consumption of nutritional supplements with "ergogenic" claims occurs in many populations including athletes (186), the elderly (24), chronic disease sufferers (78) and sedentary (201) adults, often without sound empirical evidence. As such there is a need to review the continually growing area of nutrients/ nutraceuticals and associated

73 mechanisms on aspects of skeletal muscle health, in order to formulate evidenced-74 based recommendations. Indeed, previous reviews have summarized the effects of 75 multiple nutrient/nutraceutical compounds on aspects of skeletal muscle metabolism 76 and exercise performance (53, 171). Often such reviews target a specific population 77 (e.g. athletes), endpoint (i.e. aerobic performance), or dosing regime (e.g. timing and 78 amount). As such, the present review adopts a more wide-ranging scope, including 79 data irrespective of age, training status, or other independent variables, in order to 80 highlight universal skeletal muscle effects of each nutritional compound.

81

82 Herein, we detail existing evidence for a non-exhaustive list of established and 83 emerging nutrients in relation to some or all of the following endpoints: 1) muscle 84 mass; 2) metabolism (protein and fuel) and, 3) exercise performance (i.e. strength and 85 endurance capacity). Since nutrition and exercise are the two key modifiable lifestyle factors for maintaining muscle health, this review will critique available literature 86 87 examining the muscular responses to nutrient supplementation alone, nutrient 88 supplementation plus acute exercise and chronic nutrient supplementation combined 89 with chronic exercise training (i.e. more than one bout of exercise). We shall include 90 responses to both resistance exercise (RE)/RET and endurance exercise/endurance 91 exercise training (EE/EET) since exercise mode may differentially influence muscular 92 responses to nutrition. Lastly, due to the emerging nature of some nutrients, where 93 mechanisms have not been well defined in humans, data from other models (e.g. 94 cell/rodents) have been drawn upon where necessary. Therefore, this review should be 95 of interest to scientists, clinicians, and athletes aiming to optimize muscle mass and 96 function in clinical and athletic populations. Out of the scope of this review are a 97 selection of established nutrients with purported effects on muscle (e.g. caffeine and 98 green tea) due to the large volume of existing review literature available. 99 Furthermore, some emerging nutrients (e.g. tomatidine and minerals) have been 100 omitted from this review due to the paucity of existing literature. We therefore direct 101 readers to the following publications for further reading regarding nutrients not 102 discussed herein (53), in particular; caffeine (96), green tea (114), tomatidine (69) and 103 minerals (209). Since we have not performed a systematic analysis, we apologize to 104 those whose work we have not alluded to.

105

106 Definitions of macro/micronutrients and "nutraceuticals"

107 From the outset it is important that we define what is meant when we refer to 108 macronutrients, micronutrients and nutraceuticals, since the classification can be 109 misinterpreted due to obscure classification boundaries. Proteins, fats and 110 carbohydrate (CHO) are required by the body in large amounts (i.e. g/kg/day), and are therefore termed macronutrients (139). Micronutrients are defined as vitamins and 111 112 trace elements (minerals) (212, 213) essential to our diet, albeit in small amounts (i.e. 113 mg/kg/day), to maintain normal physiological and metabolic function. Nutraceuticals 114 is an emerging term within the scientific literature, which has not been well defined. 115 A recent review defined a nutraceutical as a nutrient compound "with added extra health benefits" (i.e. in addition to the basic nutritional value contained in foods) 116 117 (210). For the purpose of this review we define a nutraceutical as: "a compound that 118 alone or in tandem with exercise, impacts major physiological end-point(s)" e.g. 119 effectors of whole body metabolism, skeletal muscle mass and/or whole body/muscle 120 function.

121

122 Established macronutrients and exercise

123 Providing a mixed macronutrient feed containing protein, CHO and fat stimulates 124 MPS (200). The absolute stimulation of MPS is highly dependent on the AA content, 125 with the provision of AA alone being sufficient to maximally stimulate MPS (15); this 126 effect is entirely attributable to the essential AA (EAA) (218). Of the EAA, the 127 branched chain AA (BCAA) provide the most potent anabolic stimulation (9), 128 particularly leucine (9, 256). This stimulation of MPS by AA is highly dose 129 dependent and saturable, with maximal stimulation provided by between 20-40g of high quality protein (166, 167, 230, 263)) or 10-20g of EAA (58). Furthermore, this 130 131 MPS stimulation is finite, where following an initial lag-period of ~30 minutes during 132 I.V infusion (or ~45-60 minutes following oral ingestion – to allow for the digestion, 133 absorption and transport of AA into the systemic circulation), the rate of MPS is 134 increased ~2-3-fold reaching a maximum by 1.5-3h. Subsequently rates of MPS 135 return to baseline (~2-3h post ingestion) despite continued plasma and muscle AA 136 availability and elevated anabolic signaling (7). Thereafter, muscle remains refractory 137 to further stimulation for an as yet undefined period; a phenomenon coined "muscle 138 full" (7). This ~2-3h period of MPS stimulation can be extended depending on the 139 type and dose of AA and macronutrient co-ingestion in combination with RE (51). 140 The timing of protein ingestion in close proximity to the performance of acute RE, 141 which when performed alone stimulates MPS for ~48h (190), is thought to be 142 important. This is because there is an enhanced sensitivity of the muscle to the 143 anabolic properties of AA for at least 24h post-exercise (36), synergistically 144 impacting MPS. However, protein ingestion before (236), during (14), 1h or 3h (199) 145 after RE have all elicited similar post-exercise increases in MPS.

146

147 The mechanisms underlying the anabolic effects to nutrition involve both the 148 stimulation of MPS (200) and suppression of MPB (255); however, it is generally 149 accepted that increases in MPS is the primary driver (8). Following transportation into 150 the muscle cell, leucine in particular stimulates mammalian target of rapamycin 151 complex-1 (mTORC1) (9), which is considered a key regulator of cell growth. 152 mTORC1 activation leads to the phosphorylation of the downstream translation 153 initiation factors 4E-binding protein (4EBP1) and 70-kDa ribosomal protein S6 kinase 154 1 (p70S6K1) (see Figure 1), stimulating the binding of eukaryotic initiation factor 4A 155 (eIF4A) and 4E (eIF4E) to 4G (eIF4G) to form the 4F (eIF4F) complex (135). The 156 eIF4F complex promotes the assembly of the 48S preinitiation complex, via 157 mediating the binding of mRNA to the 43S preinitiation complex, thereby promoting 158 MPS (135). Currently the AA sensor coupling intracellular AA signaling to mTORC1 159 remains to be fully defined, although Rag GTPases (207), leucyl-tRNA synthetase 160 (105) and sestrin2 (265) are all proposed candidates. This has led to intense interest 161 into the development of novel leucine enriched supplementation regimes to aid 162 maintenance of muscle mass (44, 249). Unlike dietary protein, neither fats nor CHO 163 lead to a direct stimulation of MPS (91, 95, 138); nonetheless, they can influence the 164 bioavailability of AA when provided as part of a mixed meal - slowing plasma AA 165 appearance and increasing AA retention (84) without blunting muscle anabolism (95). 166 Finally, CHO (as well as AA (172, 173)) are insulin secretagogues, positively 167 impacting net muscle anabolism via inhibition of MPB (255) (rather than stimulation 168 of MPS (102, 255)).

169

170 Exercise combined with feeding extends the stimulation of MPS (59) thereby171 delaying the "muscle full" set-point (8). It is the cumulative stimulation of muscle

172 protein turnover with repeated bouts of exercise and feeding that drives exercise-173 induced skeletal muscle remodeling and hypertrophy (29). The impact of 174 macronutrient supplements on exercise adaptation is multifarious. It is established that 175 CHO intake helps to spare muscle and liver glycogen stores, whilst also leading to a 176 more rapid recovery of these stores post exercise (47, 162). The benefits of chronic 177 protein supplementation alongside exercise are more inconsistent, with a number of 178 studies showing positive (120, 134, 259) or negligible findings (149, 198, 242). 179 However, a recent meta-analysis suggested that overall, protein supplementation does 180 lead to an augmentation of muscle mass and strength gains during chronic RET (49). 181 To conclude, it is now well established that macronutrients play key roles in 182 promoting muscle mass maintenance/ growth and functional adaptations. Future work 183 should focus on identifying the underlying cellular mechanisms and associated 184 refractory period of "muscle-full".

185

186 Emerging nutraceuticals and exercise

187

188 Leucine metabolites

189 Leucine, as a BCAA can be metabolized within muscle, engendering the possibility 190 that its metabolites harbor anabolic effects. For instance, the keto-acid derivative of 191 leucine metabolism, alpha-ketoisocaproate (KIC), was shown to stimulate MPS when 192 provided by infusion; however this effect could simply be due to KIC being reversibly 193 transaminated to leucine (74). There is however, good evidence of anabolic activities 194 of the more distal leucine metabolite, β-hydroxy-β-methylbutyrate (HMB) produced 195 via cytosolic KIC dioxygenase (174). Ingestion of ~3g HMB in humans elicited 196 comparable increases in MPS to 3g of leucine, whilst also suppressing MPB

197 independently of insulin (256). Similarly to leucine, the stimulation of MPS by HMB 198 is attributable to enhanced mTORC1 signaling (256). In order to understand the 199 insulin-independent suppression of MPB associated with HMB, numerous molecular 200 targets associated with different proteolytic pathways (beclin 1, calpain 1, MuRF1, 201 Mafbx and cathepsin L) have been investigated, although no detectable changes in the 202 protein abundance or post-translational modifications were observed (256). Although 203 it has been previously shown that there is a disparity between protein breakdown and 204 the abundance in proteolytic proteins (102). It should be noted that only small 205 amounts of HMB (~5%) are generated from normal leucine metabolism (137) 206 meaning that in order to obtain 3g of HMB (a commonly supplemented amount) one 207 would have to consume 60g leucine (260). Thus, when supplementing with 208 physiological doses of leucine it is unlikely that HMB is the main anabolic 209 constituent, hence the practical use of HMB as a stand alone nutritional supplement.

210

211 Indeed, longer term studies have found that HMB preserved muscle mass during 212 periods of disuse (65), while year long supplementation of HMB (plus arginine and 213 lysine) in the elderly led to improved preservation of lean body mass, possibly due to 214 an augmentation in muscle protein turnover (10). Although, since HMB was 215 administered as part of a nutritional cocktail it is impossible to delineate whether 216 HMB was solely responsible for the effects on lean body mass. However, recent 217 meta-analysis of 287 elderly participants (147 HMB-supplemented and 140 controls) 218 found HMB supplementation led to greater gains in muscle mass compared to 219 controls, indicating HMB is an effective ergogenic aid, at least in the elderly 220 population, for preventing the loss of lean body mass (268). These anabolic properties 221 of HMB have also been suggested to facilitate favorable RET adaptations. For

222 example, supplementation of HMB (3g/day) with RET for between 4 and 7 weeks led 223 to heightened increases in muscle strength (181), lean body mass (261) and fat free 224 mass (174) compared with RET alone. However, not all studies have reported positive 225 effects; for instance RET for 1 month combined with between 3 to 6g/day of HMB 226 did not change parameters of body composition in RE trained males (140). In this 227 latter case, HMB was provided in its calcium form (CaHMB) (140), which compared 228 to the free acid form (FA-HMB), may have lower bioavailability and therefore might 229 not enhance anabolism to the same extent (82) (though this premise remains to be 230 tested).

231

232 Another ergogenic effect of HMB is the purported ability to attenuate exercise-233 induced muscle damage (EIMD). For example, oral HMB supplementation (3g/day 234 for 6 weeks) in EE athletes attenuated the increase in creatine phosphokinase and lactate dehydrogenase (plasma markers of EIMD) after a 20 km time trial run 235 236 compared to placebo (136). This protective effect of HMB may be due to HMB being 237 a precursor of *de novo* cholesterol synthesis (175), which is critical for cell membrane 238 (sarcolemmal) maintenance. Thus, HMB may maintain muscle membrane integrity 239 during bouts of damaging exercise.

240

Furthermore, HMB has been shown to be efficacious for improving EE performance.
For example, Vukovich et al. (2001) reported that HMB in combination with EE
prolonged the time to reach the onset of blood lactate accumulation and VO_{2PEAK},
although via an unknown mechanism (246). Others have investigated markers of
endurance performance following high intensity interval training (HIIT) with or
without HMB supplementation. To exemplify, following 5 weeks of HIIT-based

running in combination with 3g/d ca-HMB, VO_{2MAX} improved more compared to placebo (144). The authors speculated that the performance benefits were attributable to the preservation of the cell-membrane, however was membrane stability was not measured in the study and thus no mechanistic conclusions can be drawn.
Furthermore, HMB in untrained participants potentiated the effects of HIIT on physical working capacity at the onset of neuromuscular fatigue, compared to HIIT training alone (163).

254

255 In summary, the literature supports a role for HMB supplementation in promoting: 1) 256 muscle mass, demonstrated by the preservation or increase in muscle mass when 257 combined with RET, 2) muscle metabolism, since HMB stimulates MPS and inhibits 258 MPB, and 3) aerobic and strength performance. However, data reporting negligible 259 effects of HMB does exist (140, 214); prior exercise training history and/or being accustomed to an exercise stimulus may determine the effectiveness of the 260 261 intervention. This is supported by evidence that HMB supplementation combined 262 with RET in trained individuals had no effect on muscle strength or lean body mass 263 versus placebo (214). Further research is warranted which rigorously investigates: 1) 264 the mechanisms regulating the insulin-independent suppression of MPB associated 265 with HMB supplementation, 2) the effects of novel and accustomed exercise in 266 combination with HMB on endurance performance, and 3) the effects of EET and 267 HMB on muscle mass.

268

269 Creatine

270 Creatine (Cr) is an endogenously formed metabolite synthesised from arginine,
271 glycine and methionine (20). Found almost exclusively in skeletal muscle, Cr levels

272 can be increased via endogenous synthesis in the liver and pancreas or exogenously 273 from foodstuff, particularly meat and fish (43, 99). Following oral consumption of Cr, 274 Cr is absorbed into the systemic circulation and is taken up by skeletal muscle via the 275 sarcolemal Na⁺/Cl⁻dependent transporter, soluble carrier family 6 member 8 276 (SLC6A8) (126). Intramuscular Cr can then be phosphorylated to phosphocreatine in 277 a reversible reaction facilitated by the enzyme, creatine kinase. During high energy 278 demands, the phosphate of phosphocreatine plus free ADP is used for ATP synthesis 279 (126). Another fate of intramuscular Cr is the conversion to the end-product 280 creatinine, which due to its muscle exclusivity correlates with muscle mass (110). 281 Creatinine diffuses out of the muscle cell and is removed from the body via urine 282 (126). Oral Cr administration (20-30g/day for 2 or more days) increases total muscle 283 Cr stores by >20%, of which 20-30% is stored in the form of phosphocreatine (PCr) 284 (107). The greatest Cr loading effects are seen in those with the lowest basal Cr pool 285 levels i.e. vegetarians (99), thus basal muscle Cr levels are an important determinant 286 of Cr uptake (43, 107). The ergogenic effects of Cr are facilitated by elevated resting 287 PCr, which sustains PCr-mediated ATP resynthesis during intense anaerobic exercise 288 (42) primarily in fatigue susceptible type II fibers (43), thus improving acute high 289 intensity performance. Increased basal muscle PCr levels also expedite the 290 replenishment of PCr stores during recovery from intense exercise, leading to 291 improved performance over repeated bouts of sprint exercise (43, 99). For example, 292 20g/day of Cr for 5 days led to sustained isokinetic torque compared to placebo 293 during repeated bouts of maximal voluntary contractions (100). Similar results have 294 been obtained when employing different exercise modes such as cycling (18, 70). In 295 contrast, some studies have shown no effect of Cr supplementation on exercise 296 performance (55, 170, 219, 234). For example, despite increased total muscle Cr 297 following 5 days 30g Cr (and 30g dextrose) supplementation, there were no 298 improvements in sprint exercise performance (219). A lack of ergogenic effect may 299 be attributable to the small total muscle Cr levels of ~12mmol/kg/dry weight (219), 300 where previous reports show total Cr of >20 mmol/kg dry mass results in ergogenic 301 benefit (42). Factors affecting the extent to which muscle Cr stores increase are not 302 well known, although pre-existing muscle Cr, exercise (107) and CHO ingestion (98) may be potential factors. Also in regards to performance, Cr supplementation 303 304 improves the rate of functional recovery following exercise (54), which might be 305 mediated by Cr promoting gene expression thereby aiding MPS during the recovery 306 periods (54, 258), ultimately increasing the deposition of newer functional proteins 307 for improved functional recovery. Indeed, Cr supplementation will also increase 308 muscle PCr, which might increase local rephosphorylation from ADP to ATP (54), 309 thus providing more energy for contraction. As such, performance during successive 310 bouts is maximized (i.e. can work at higher training loads) which, in-turn, may 311 contribute to the gains in strength observed when combined with RET (31, 63, 66).

312

313 In addition to energetic impacts, evidence supports a role for chronic Cr 314 supplementation, typically provided as a loading dose (i.e. ~5 days of 20/30g) 315 followed by maintenance doses (\sim 5g) (32), for increasing muscle mass (25, 31, 245). 316 For example 12 weeks RET plus Cr (25g/day for the first week, followed by a 317 maintenance dose of 5g/day for the rest of the training duration) resulted in 318 significantly greater fat free mass, strength and fibre cross sectional area gains 319 compared to placebo (245). Similarly, 14 weeks of whole body RET (3 x/week) 320 combined with Cr (5g/day plus 2g dextrose) led to significantly greater gains in fat 321 free mass (31). Furthermore, a recent meta-analysis concluded that Cr 322 supplementation combined with RET elicited further increases in fat free mass 323 compared to RET alone (albeit in older adults) (66). This meta-analysis reported a 324 weighted mean difference (WMD) of 1.33kg for RET combined with Cr (66), 325 compared to 0.69kg for RET with protein (49) demonstrating the potent ergogenic 326 effect of Cr on fat free mass. The mechanisms regulating the effects of Cr on muscle 327 mass remain to be fully elucidated; although it is known that acute provision of Cr 328 does not directly stimulate MPS either with (152) or without RE (153). However, Cr 329 did augment the satellite cell (SC) response following RE (178), which may 330 contribute to hypertrophic gains since increased SC content is observed following 331 chronic RET (241). Although the contribution of SC to hypertrophy is still debated 332 (158), theoretically the nucleus content in hypertrophying muscle fibres becomes 333 diluted such that additional nuclei are required for continued growth. As such, SC 334 fuse and donate nuclei to the pre-existing muscle fibres, thereby increasing the 335 transcriptional capacity of the muscle cell and thus the potential for growth (30). 336 Additionally, augmented PCr availability and ATP resynthesis during intense exercise 337 likely permits greater work output. Greater work may be a factor which stimulates 338 greater muscle gene expression thereby promoting muscle mass accretion observed 339 with Cr supplementation (32, 204, 257). It is possible that changes in fat free mass 340 may be in part attributable to the osmotic potential of elevated intracellular Cr leading 341 to myocellular water retention (204, 273). This potential increase in cell volume from 342 Cr-induced fluid retention may then act as an anabolic signal, activating intracellular 343 signalling cascades that maintain cellular function (204). For example, the attachment 344 complex protein focal adhesion kinase (FAK), which is critical for osmosensing and 345 hypertrophic signalling (56), is up-regulated following Cr supplementation (204).

347 To summarize, Cr supplementation is capable of increasing total muscle Cr stores 348 which improves performance via maintaining PCr mediated ATP re-synthesis, 349 although not all studies have shown improved exercise performance. Beyond 350 performance, chronic Cr supplementation combined with RET is capable of 351 stimulating muscle mass accretion. Although, acute affects of Cr supplementation on 352 MPS are not shown, potentiating RET capacity and enhanced recovery likely mediate increased muscle mass. Further studies are needed to firmly establish factors which 353 354 determine the variability of Cr storage in muscle, since this could have implications 355 for optimizing the dosing regime of Cr.

356

357 *Carnitine*

358 Carnitine is synthesized endogenously from AA precursors and can also be obtained 359 exogenously from the diet, particularly red meat, with the majority of whole body 360 carnitine (95%) being stored in skeletal muscles (26). Carnitine has well documented 361 roles in regulating the translocation of long-chain fatty acids into the mitochondrial 362 matrix for subsequent β -oxidation (223). This process is regulated via the 363 mitochondrial enzyme carnitine palmitoyltransferase 1 (CPT1) catalysing the 364 esterification of carnitine with long-chain acyl-coA (223). The long chain 365 acylcarnitine is transported across the mitochondrial membrane into the mitochondrial 366 matrix, concurrently with the exchange of free carnitine from the mitochondrial 367 matrix (94). Inside the mitochondrial matrix, acylcarnitine is transesterified to long 368 chain acyl-CoA and free carnitine via carnitine palmitoyltransferase 2 (CPT2) (223). 369 Subsequently, the long chain acyl-CoA is able to undergo β -oxidation. Readers are 370 directed towards the review by Stephens et al., (223) for a more comprehensive 371 overview regarding the role of carnitine in fatty acid translocation.

373 Therefore, increasing muscle carnitine content could hypothetically enhance fat 374 oxidation whilst sparing glycogen, therein posing an attractive ergogenic strategy for 375 delaying fatigue during prolonged aerobic exercise and aiding body weight control by 376 promoting fat oxidation. However, a number of studies have failed to increase muscle 377 carnitine via intravenous infusion despite increasing plasma carnitine availability 378 (225). Similarly, oral consumption of carnitine acutely (220) and chronically (247) 379 failed to increase muscle carnitine levels. It is likely the poor bioavailability of oral 380 carnitine and rapid urinary clearance (106) explain, at least partly, why carnitine 381 supplementation alone does not increase muscle carnitine stores (225). Consequently, 382 several strategies have been tested to stimulate muscle carnitine accretion; concurrent 383 hyperinsulinaemia and hypercarnitineaemia increased human muscle carnitine content 384 by ~15% (225) and carnitine plus CHO supplementation promoted muscle carnitine 385 accretion (211). Mechanisms by which insulin can facilitate increased muscle 386 carnitine are purported to be due to insulin increasing Na⁺-dependent active transport 387 of carnitine into the muscle via organic cation transporter (OCTN2) (225). Similarly, 388 Na⁺-dependent uptake of AA (274) and Cr (97) by skeletal muscle is increased by 389 insulin, thereby supporting the proposed mechanisms of carnitine uptake (225). 390 However, CHO in addition to protein blunts the stimulation of muscle carnitine 391 uptake (211). This was previously suggested to be related to AA inhibiting carnitine 392 intestinal absorption (233), however, since the combination of CHO and protein led to 393 greater plasma and urinary carnitine versus CHO alone, this suggests otherwise (211). 394 The precise mechanisms underlying the blunting effect of protein on carnitine uptake 395 into skeletal muscle remain to be fully identified.

By increasing muscle carnitine content, human fuel metabolism can be manipulated. 397 398 For example, acute increases in resting skeletal muscle carnitine content led to an 399 inhibited glycolytic flux (denoted by reduced lactate) and CHO oxidation 400 (demonstrated via reduced pyruvate dehydrogenase complex activity) concurrent with 401 increased muscle glycogen and long-chain acyl-CoA accumulation (224). These 402 studies therefore support the notion that carnitine can enhance fat oxidation whilst 403 sparing glycogen. A subsequent study by the same group found a 30% increase in 404 muscle carnitine content following dietary carnitine (1.36g) and CHO (80g) twice a 405 day for 6 months and a ~55% reduction in glycogen use during low intensity exercise 406 (30 minutes cycling at 50% VO_{2max}) compared to controls (250). Additionally, 407 following 3 months supplementation, carnitine and CHO feeding prevented the 2kg 408 increase in body mass, which was seen in the control group (250). The authors 409 speculate that the lack of increase in body mass in the carnitine group may be due to 410 carnitine-induced increases in long-chain fatty acid oxidation (250).

411

412 Subsequent studies have supported the role of carnitine combined with CHO for the 413 prevention of fat gain, which was associated with increased fat oxidation during low 414 intensity exercise (227). Conversely, increased CHO but not fat oxidation during 415 steady-state exercise has been reported following 2 weeks of carnitine 416 supplementation (3g/day carnitine and tartrate combined with CHO meals) (1), and 1 417 month of carnitine intake (3g/day carnitine and tartrate) had no effect on substrate 418 oxidation during steady-state exercise (27). These findings conflict with those 419 reported at rest and differ from hypotheses which suggest limited carnitine availability 420 may limit fat oxidation during exercise (224). Interestingly, in the study by Broad and 421 colleagues (27) there was no mention of daily carnitine supplementation being co422 ingested with supplemental CHO, which is critical for increasing muscle carnitine
423 stores (226). Therefore the protocol might have been suboptimal for increasing
424 muscle carnitine stores, which was not measured within the study, and thus may
425 explain the negligible effect of carnitine on substrate utilisation.

426

Thus, insulin-stimulated carnitine uptake is capable of increasing muscle carnitine stores (when combined with CHO), which promotes fat oxidation, spares muscle glycogen and thereby improves endurance performance. Further work is required to fully elucidate the mechanisms regulating the blunting of carnitine uptake when combined with CHO and protein.

432

433 n-3 polyunsaturated fatty acids

434 n-3 polyunsaturated fatty acids (n-3 PUFA), contain a double bond at the third carbon atom from the end of the carbon chain. Abundantly found in walnuts and oily 435 436 fish, there are 3-types of n-3 PUFA: 1) alpha-linoleic acid (ALA), 2) 437 eicosapentaenoic acid (EPA), and 3) docosahexaenoic acid (DHA). n-3 PUFA serve 438 well established roles as critical components of cell membranes and as substrates for 439 lipid signaling (37). Early evidence demonstrated a role for n-3 PUFA in muscle 440 anabolism when n-3 PUFA-enriched feed provided to growing steers increased the 441 phosphorylation of anabolic signaling and the non-oxidative whole-body disposal of 442 AA, representative of increased whole-body protein synthesis (85). Additionally, 443 fish oil containing 18% EPA attenuated the loss of skeletal muscle following 30% 444 burn in guinea pigs, which may be mediated by EPA reducing inflammatory related 445 prostanoids (4). Hence there is interest for the application of n-3 PUFA as a 446 nutritional supplement in humans. It has been suggested that fish oil

447 supplementation in humans may increase muscle n-3 PUFA content (160), have 448 anti-inflammatory properties (128) via reduced leukotriene B4 formation (an inducer 449 of inflammation) (79) and attenuate the loss of muscle mass in disease states, possibly via reductions in pro-inflammatory cytokines (203). Furthermore, n-3 450 451 PUFA might potentiate anabolic responses to nutrition in skeletal muscle. In support 452 of this, 8 weeks n-3 PUFA supplementation (1.86g EPA plus 1.5g DHA/day) was 453 shown to augment hyperaminoacidaemia-hyperinsulinemia induced increases in 454 mixed MPS compared to corn oil controls in young, middle aged and older adults 455 (215, 216). Indeed, enhanced phosphorylation of mTORC1 and the downstream 456 target p70S6K1 were observed in young, middle aged and older adults (215, 216). 457 However, MPS increases were observed in the context of hyperaminoacidaemia and 458 hyperinsulinemia, which may not be physiologically obtainable. Moreover, 459 supplementation of n-3 PUFA for 3 (151) and 6 months (217) led to increases in 460 muscle mass and function in older adults. A recent study in C₂C₁₂ skeletal muscle 461 cells found a 25% increase in MPS following EPA that was not observed following 462 DHA (131), suggesting that EPA may be the more anabolic constituent of n-3 463 PUFAs. Interestingly, both EPA and DHA stimulated p70S6K1, thus EPA might 464 stimulate MPS via a p70S6K1 independent mechanism (131).

465

Despite being less well defined, these positive effects of n-3 PUFA on muscle appear to be recapitulated when combined with exercise (202). Supplementation during 3 months RET promoted increases in muscle strength in older women (202), suggesting that n-3 PUFA could have a positive role on muscle protein metabolism by enhancing the anabolic response to RE (90). Despite recent contrasting findings that chronic fish oil supplementation failed to increase muscle anabolism in younger

472 people under rested and exercise trained conditions (161), the lack of pre- and post-473 intervention measurements confound interpretation of these results. Additionally, 474 positive findings regarding the efficacy of n-3 PUFA supplementation have been 475 largely observed in older adults. Because ageing associates with blunted anabolic 476 responses to AA and exercise, the muscular benefits of n-3 PUFA may be more 477 pronounced in those in which anabolic responses are already sub-optimal.

478

479 Whilst the combination of EE and n-3 PUFA have not been investigated in the 480 context of muscle mass and protein metabolism, there is sound evidence to suggest 481 that n-3 PUFA supplementation may alter fuel metabolism by improving metabolic 482 flexibility, i.e. the ability to switch between using fat or CHO as a fuel source. For 483 example, 6g/day of fish oil for 3 weeks led to a 35% increase in fat oxidation 484 following a glucose or fructose bolus (61). In the context of exercise, 3 weeks fish 485 oil supplementation (6g/day) led to a non-significant trend for greater fat oxidation 486 during an acute bout of cycling (90 minutes at 60% O₂ output), a possible 487 compensatory response for the lower CHO oxidation (62). Further studies have 488 found significantly greater fat oxidation during EE in humans following 3 weeks 489 fish oil supplementation (119). Although, each of these studies lacked 490 comprehensive investigation into the mechanisms regulating changes in metabolic 491 flexibility, n-3 PUFA have been shown to mediate the up-regulation of genes 492 regulating mitochondrial biogenesis, such as peroxisome proliferator-activated 493 receptor-alpha (PPAR α) and -gamma (PPAR γ) and the transcription factor nuclear 494 respiratory factor 1 (NRF1) in mice (146), offering a potential explanation for these 495 findings. Additionally, rats fed a low fat diet supplemented with DHA had higher 496 oxygen consumption and apparent Km for ADP in permeabilised muscle fibres

497 compared to placebo, indicative of improved mitochondrial function (103). Thus,
498 effects on mitochondrial biogenesis and function may underpin the synergistic
499 effects of n-3 PUFA and EE-associated metabolic adaptation.

500

501 Collectively, n-3 PUFA supplementation beneficially effects muscle protein 502 metabolism, which may contribute to chronic gains in muscle mass, and also shows 503 promise for impacting metabolic flexibility. Further human research is warranted 504 which investigates the effects of EPA and DHA individually on aspects of skeletal 505 muscle health to establish which is the main anabolic constituent.

506

507 Nitrates

508 Nutrients that contain dietary inorganic nitrates (e.g. beetroot and lettuce) or related 509 precursors (e.g. arginine) can increase nitric oxide (NO) availability, which is 510 capable of modulating muscle-related processes including contraction, glucose 511 homeostasis, blood flow (127) and satellite cell activation (5, 35). Following oral 512 ingestion of dietary nitrate-rich foods, nitrate (NO_3) is reduced to nitrite (NO_2) via 513 nitrate reductases within the mouth (68). Subsequently, NO_2^- is converted into NO 514 and additional reactive nitrogen species in the acidic environment of the stomach 515 (2). Oral NO₃ increases plasma NO₃ and NO₂ levels, indicating nitrates are 516 bioavailable. With regards to muscle protein turnover, these compounds are thought 517 to promote anabolism via improving blood flow (through increased NO production), 518 thus enhancing nutrient delivery to the muscle, providing more substrates for MPS. 519 However, it has been shown on several occasions that enhanced muscle blood flow 520 does not augment anabolic responses in young or older males (164, 187-189). 521 Nonetheless, dietary arginine (the principle substrate for endothelial nitric oxide 522 synthase (eNOS) for endogenous production of NO) supplementation did increase 523 the weight of the soleus and EDL muscle in obese rats (125). However, in humans 524 Tang and colleagues found oral arginine (10g), of which approximately 70% is 525 bioavailable following ingestion (154), had no effect on muscle blood flow or MPS 526 when provided alone or in combination with AA or acute RE (232). In contrast, 527 vasodilatory effects of arginine have been shown when administered by IV infusion 528 at higher doses (30g) (23). By comparison, the peak in plasma arginine was considerably lower following 10 g of oral arginine (~225 µmol⁻L⁻¹) (232) versus 30g 529 IV infused arginine (~6223 μ mol⁻¹) (23), thus the dose of arginine used by Tang 530 531 and colleagues may not have been sufficient to increase plasma arginine to an 532 amount which elicits effects on vasodilation. In fact the authors project that on the 533 premise of 70% bioavailability, a total of ~43 g of oral arginine would have been 534 required to reach similar plasma levels reported following IV infusion (232). An 535 alternative may be to utilize the arginine precursor citrulline (156), which bypasses 536 splanchnic extraction (267). Supplementation of citrulline in rodents was shown to 537 stimulate MPS (179) via the mTORC1 pathway (193). However, similar effects 538 have not been observed in humans, since there was no additional impact of citrulline 539 (10g), when co-ingested with whey, on MPS or blood flow with or without acute RE 540 versus whey combined with non-essential AA (NEAA) (52). Lastly, flavanols such 541 as in cocoa (39, 109) also promote vasodilation via NO pathways (80, 132). It was 542 recently reported that despite an acute dose of cocoa flavanols (350mg) increasing 543 macro- and microvascular blood flow, this was not associated with enhanced muscle 544 anabolic responses to nutrition (188), suggesting in healthy individuals nutrient 545 delivery is not rate-limiting for muscle anabolism (189).

547 In contrast to muscle mass and strength related studies, a plethora of research has 548 investigated the effects of nitrates and EE on whole body metabolism and endurance 549 performance. An early study by Larsen et al. (2007) reported that sodium nitrate 550 supplementation reduced the O_2 cost of submaximal cycling exercise (148), whilst 551 similar results have reported following nitrate-rich beetroot juice supplementation 552 (11), indicative of improved aerobic metabolism or mechanical efficiency (147). In 553 addition to metabolic improvements, nitrate supplementation provided in the form of 554 500ml beetroot juice improved 4 and 16.1km cycling time trial performance in 555 trained cyclists (145). These improvements are likely attributable to an enhanced 556 rate of PCr recovery (239) increasing the rate of ATP synthesis, although this 557 mechanism remains speculative at present. Emerging evidence from cell culture 558 studies suggests nitrate supplementation enhances mitochondrial biogenesis and 559 oxidative metabolism via increased 5'adenosine monophosphate-activated protein 560 kinase (AMPK) and peroxisome proliferator-activated receptor γ co-activator 1α 561 (PCC-1 α) gene expression (240), though *in vivo* data is lacking. Although others 562 have also reported nitrate-mediated improvements in EE performance have been 563 shown (169, 269), several authors have shown no improvements (6, 48, 254). For 564 example, consuming 140ml of beetroot juice 2.5h prior to a 1h cycling time trial did 565 not improve time trial performance in trained cyclists compared to placebo (48). 566 These discrepant findings may be explained by methodological differences such as 567 the dose of nitrates (since the increase in plasma NO₃⁻ and NO₂⁻ is somewhat dose 568 dependent (270)), control of nitrate intake, the source of nitrates provided and the 569 training status of the participants. For example, since numerous studies demonstrate 570 nitrate supplementation to have no beneficial effect on performance in well trained 571 participants (6, 48, 254), it is likely that fitness status influences the ergogenic

572 potential of nitrate supplementation (127). Indeed, higher plasma levels of NO_2^- 573 were present in trained versus untrained participants pre and post acute exercise 574 (195). This may be explained by higher nitric oxide synthase (NOS) activity (159) 575 and/ or higher plasma nitrate values (195) in trained participants.

576

577 Thus, it is established that nitrates reduce the O_2 cost of aerobic exercise. Further *in* 578 *vivo* work is required to understand whether larger oral doses, than those already 579 tested, of arginine can enhance vasodilation and effects protein metabolism, across 580 different ages. Furthermore, precise mechanisms regulating the nitrate-induced 581 beneficial effect on O_2 cost remain to be delineated *in vivo*.

582

583 β -alanine and carnosine

584 β -alanine (BA) is a beta AA produced endogenously in the liver found primarily in 585 meat (238). BA is the rate-limiting precursor for the synthesis of carnosine, which is 586 a dipeptide of BA and histidine that improves the muscle buffering capacity (222). 587 BA supplementation has generated interest as an ergogenic aid since early studies found BA supplementation capable of increasing muscle carnosine stores by ~40-588 589 65% demonstrating good bioavailability; a consistent and reproducible finding (16, 590 108, 222). Although the extent to which carnosine content increases may be 591 dependent on the dosing protocol (108). Other factors have been shown to cause 592 muscle carnosine variability, including gender, age, dietary BA intake, 593 vegetarianism (76) and fibre type distribution, since carnosine content is double in 594 type II compared to type I fibres (38). The regulation of muscle carnosine stores 595 from dietary/ supplemental sources is still under investigation (222). Oral BA may be transported across the gut via the H⁺-coupled PAT1 AA transporter (235), which 596

increases plasma availability of BA for muscle carnosine synthesis. Transport of BA
into skeletal muscle has been shown to be regulated via both peptide transporter 2
(PEPT2) (67) and the taurine transporter (TauT) (237), although this remains to be
confirmed in humans. Once within the muscle cell, BA and sarcoplasmic histidine
synthesize carnosine via carnosine synthase (222).

602

Increased muscle carnosine stores may increase RE work capacity via regulation of the muscle buffering capacity during RE, and therefore has gained interest into the potential of BA supplementation for promoting RE/T adaptations (133). However, 10 weeks RET combined with 6.4g/day BA did not enhance body mass or strength changes in twenty-six males, despite increased muscle carnosine (133).

608

609 During high intensity exercise, the build up of H⁺ ions reduces the intramuscular pH 610 leading to fatigue likely due to acidosis-induced reductions in ATP generation (205). 611 Increased muscle carnosine, via BA supplementation, is capable of reducing 612 intramuscular acidity during high intensity exercise therefore enhancing exercise 613 performance (57, 112, 229). For example, 4 and 10 weeks of BA supplementation 614 increased cycling capacity (total work done) in untrained males when cycling at 615 110% of maximum power (112), hypothesized to be due to improved intracellular 616 buffering. In sprint-trained athletes, 4-5 weeks BA supplementation (4.8 g/day) led 617 to increased knee torque but did not enhance sprint performance (64). Importantly, 618 this study found increased muscle carnosine stores (+47%), demonstrating that it is 619 possible to increase muscle carnosine even in trained athletes (64). Women 620 supplemented with BA for 28 days delayed the onset of neuromuscular fatigue 621 (denoted by improved ventilatory threshold, physical working capacity and time to

exhaustion), likely the result of improved intracellular buffering capacity (228).

623

BA supplementation is associated with paresthesia (i.e. flushing) following acute doses of $\ge 800 \text{ mg}$ (60, 108). This side effect is deemed dose-dependent and likely relating to BA plasma kinetics (108). Compared to pure BA, slow releasing BA capsules eliminated all paresthesia side effects, most likely explained by the attenuated BA plasma concentration and delayed time to peak (60), and thus offer a suitable alternative supplement option.

630

BA supplementation may therefore be implemented to increase muscle carnosine
stores which, in turn enhances acute EE performance, likely mediated via an
enhanced intracellular buffering capacity. However, the effects of BA combined with
RET needs to be studied further *in vivo*.

635

636 Micronutrients: vitamins and exercise

Vitamins are essential for many metabolic processes, however consuming vastly more or less than recommended can likely result in toxicity or deficiency, respectively (212), which can be detrimental for muscle health. For example, vitamin D (VitD) deficiency has been linked to muscle wasting (86) and as such, vitamins have been implicated in regulating muscle mass, metabolism and performance as discussed below.

643

644 Vitamin D

VitD is a steroid hormone, the deficiency of which in humans throughout the world is 646 647 reaching epidemic levels mostly due to reduced sun exposure (116). VitD deficiency 648 is prevalent in many debilitating conditions including osteoporosis and rickets (116, 649 117) and is associated with reduced muscle mass and strength (244). For example, 650 rodent models have demonstrated VitD deficiency induced muscle loss, a 651 consequence of increased MPB and reduced MPS compared to controls (17). The 652 VitD receptor (VDR) is present in many tissues including muscle (89) which has led 653 to increasing interest in the effects of VitD on muscle metabolism. Although 654 conflicting reports exist regarding the presence of the VDR (192, 251), these 655 discrepancies are most likely due to the use of non-validated antibodies, lack of 656 controls or differences in antibody specificity (89).

657

658 Following sun exposure or consumption of VitD-rich dietary sources/ supplements, 659 circulating VitD bound to VitD binding protein (DBP) increases, and transports to the 660 liver where hydroxylation (via 25-hydroxylase) generates 25-hydroxyvitamin D 661 (25D). A second hydroxylation in the kidney (via 1α-hydroxylase) produces the 662 biologically active form of VitD (1,25(OH)₂D) (87). Mechanisms underpinning the 663 effects of VitD on muscle metabolism are not fully understood but are believed to be 664 in part related to the regulation of gene expression via the VDR or secondary messenger protein signaling (194). The binding of 1,25(OH)₂D to the VDR causes 665 666 conformational changes, allowing VDR to heterodimerize with the retinoid X receptor 667 (RXR). This complex then binds to VitD response elements (VDREs) on the DNA, promoting gene transcription (45, 87). 1,25(OH)₂D may also have non-genomic 668 669 effects on intramuscular signaling by binding to a cell surface receptor (40), which, in 670 turn, this activates intracellular signaling pathways such as the Akt and mitogen-

671 activated protein kinases (MAPK) pathway (33). For example, VitD treatment 672 increased myotube size, down-regulated myostatin (88), up-regulated Akt (33) and 673 sensitized the Akt/ mTORC1 pathway and MPS responses to leucine and insulin 674 (206) in muscle cell cultures. Thus, there is growing *in vitro* evidence for an anabolic 675 role of VitD in skeletal muscle. In humans, supplementation of VitD has been 676 proposed to increase muscle strength (13), function (83, 252), fibre area (46, 208, 677 221), lean body mass (72) and reduce falls (83, 130), although a recent meta-analysis 678 found no overall effects of VitD supplementation on muscle mass (13). Of 679 importance, benefits of VitD supplements are observed particularly in the elderly or in 680 those who are VitD deficient (13), which may be a potential explanation for some of 681 the discrepant findings within the literature.

682

683 Since VitD supplementation has been suggested to promote muscle mass and 684 function, concurrent VitD supplementation with RET may be expected to potentiate 685 exercise-induced adaptations. Indeed, 4 months VitD₃ supplementation (1920IU/day 686 plus 800mg/day calcium) in combination with lower-body RET for 3 months led to a 687 greater reduction in myostatin mRNA expression, a negative regulator of muscle 688 mass, and a greater change in the percentage of type IIa muscle fibres in young males 689 (3). However, these changes did not translate into greater muscle strength or 690 hypertrophy above RET alone (3). Elderly adults undertaking RET combined with 691 VitD improved muscle quality (strength/ cross sectional area) more so than young 692 males, thus demonstrating that elderly individuals may benefit more from VitD 693 supplementation (3). VitD insufficient (according to VitD ranges by (118)) 694 overweight and obese adults did not augment gains in lean body mass compared to 695 placebo following 3 months RET and 4000IU/day VitD₃ (41). This may be due to the

fact that VitD is deposited in body fat, reducing bioavailability (266) and requiring greater levels of VitD supplementation to promote muscle anabolism in this population. Similarly, others reported no change in body composition after 9 months supplementation of 400IU/day and RET 2x/week in overweight males and females (34). Since no change in body composition was seen in the training only group either, these findings may resulted from low training adherence (~53%) (34).

702

703 Therefore, while there is some evidence to suggest an emerging role for the 704 supplementation of VitD for the promotion of muscle mass and protein metabolism, 705 more high-quality *in vivo* work is required. For example, investigations into the direct 706 effect of VitD on MPS in humans are needed, as are more acute and chronic EE 707 studies in order to understand the potential synergistic effects of VitD 708 supplementation and exercise on muscle health. These studies need to be well 709 controlled, accounting for basal VitD status and should determine true VitD 710 bioavailability.

711

712 Vitamins C and E (i.e. "antioxidants")

713 High levels of free radicals (an atom with a single unpaired electron) and reactive 714 oxygen species (ROS) can disrupt protein homeostasis (196). This is likely due to 715 ROS promoting catabolism via increases in the ubiquitin-conjugating activity (150) 716 and diminishing anabolism via attenuation of MPS and signaling proteins (182), with 717 evidence for these mechanisms arising from cell culture studies. It is therefore thought 718 that consuming dietary antioxidants (i.e. vitamin C (VitC) and E (VitE)) capable of 719 donating an electron to neutralize free radicals (168), may reduce ROS thus 720 minimizing disruption of protein homeostasis. For instance, a positive relationship

- was observed between VitC intake and appendicular lean body mass (209), which
 may be related to the fact that muscle is a major storage site for VitC (253).
- 723

724 However, physiological levels of ROS such as that produced during exercise (248) 725 promote gene expression (e.g. manganese superoxide dismutase (MnSOD)) (185) and 726 cell signaling (e.g. c-Jun N-terminal kinases and MAPK's) (92, 185) in healthy 727 skeletal muscle. Thus, it may be hypothesized that provision of antioxidants combined 728 with RET could hamper exercise-induced adaptations. Human studies assessing the 729 interactions of RET and antioxidant supplementation have produced varied results 730 with support for positive (22, 143), negative (19, 184) and negligible (21, 184) effects 731 of antioxidants. For example, greater gains in fat free mass were observed following 6 732 months RET combined with VitC (1000mg/day) and VitE (600mg/day) compared to 733 RET alone, postulated to be a result of antioxidants increasing protein synthesis, 734 although this was not measured (22, 143). However, 3 months supplementation of 735 daily VitC (1000mg) and VitE (235mg) alongside whole body RET led to blunted 736 gains in total lean body mass and muscle thickness (19). Ten weeks whole body RET 737 combined with 1000mg VitC and 235mg VitE daily found negligible effects on acute 738 MPS and muscle mass, however, the phosphorylation of anabolic signaling proteins 739 was blunted compared to placebo (184). Supporting the lack of ability to potentiate 740 exercise-induced adaptations, RET and antioxidants increased fat free mass but no 741 more than RET alone (21). This may be a result of the low participant numbers or due 742 to the fact that the participants were not vitamin deficient, therefore it may be that 743 additional vitamin intake provides little or no added benefits. The absorption of 744 antioxidants, particularly VitC, may also be limited, (21) further reducing the 745 antioxidant-induced anabolic potential. Another factor which may explain the efficacy 746

of antioxidant supplements is the age of participants since the elderly have an altered redox status (184), which could impact the efficacy of the antioxidants.

748

747

749 Detrimental and negligible interactions have also been reported following EE and 750 antioxidant supplementation (183, 272). For example, daily VitC (1000mg) and VitE 751 (235mg) during an 11 week EE training program consisting of steady-state and HIIT 752 in humans led to blunted increases in mitochondrial protein content, indicative of 753 blunted mitochondrial biogenesis, although no differences were observed in VO_{2Max} 754 compared to placebo (183). Similarly, VitC hampered running time to exhaustion in 755 rats, perhaps a result of impaired mitochondrial biogenesis (93). Others have reported 756 no alterations in EE-induced adaptations (measured as maximal O₂ consumption, 757 power output and workload at lactate threshold) following antioxidant 758 supplementation (272). Differences in the antioxidant dosing regimes might explain 759 some divergent findings between studies (183). Thus, whilst VitC and VitE are vital 760 for maintaining health, the benefits of supplementation are debatable and are likely to 761 depend on the age group deficiency status. The poor bioavailability described in 762 several studies may further impact any benefits of supplementation (21).

763

Currently, it is difficult to conclude whether antioxidant supplementation is beneficial or detrimental for muscle mass, protein metabolism and performance/adaptation. Close and colleagues highlighted that confusion and misguided conclusions are often drawn due to inappropriate methodological techniques (53). As an example, the lipid peroxidation marker, thiobarbituric acid reactive substances (TBARS), can be the result of non-redox related sources and is thus no longer recommended for use as an oxidative stress marker (81), yet is often published in the context of antioxidant supplementation (111, 155, 157). It is believed that diets rich in fruits and vegetables as opposed to large supplemental doses of antioxidants are preferable since no investigations to date support attenuations in adaptations to training in response to fruits and vegetables, which have naturally occurring antioxidants (53).

775

776 Emerging Nutraceuticals

777 Ursolic acid

778 Despite the paucity of research at present, other novel nutraceuticals have gained 779 recent attention for their potential to promote muscle mass, protein metabolism and/or 780 exercise adaptations. For example, the naturally occurring phytochemical ursolic acid 781 (UA) found in apple peel has drawn attention since UA supplemented mice gained 7% muscle weight (142), suggesting UA may be capable of promoting muscle 782 783 hypertrophy (71, 124, 141, 142). UA-induced hypertrophic effects are proposed to be due to the attenuation of atrophy-related genes MuRF1 and atrogin-1, and the up-784 785 regulation in IGF gene expression (142). Contrary to this, UA incubations in cell 786 cultures was reported to inhibit leucine-stimulated mTORC1 signaling by inhibiting 787 mTORC1 localization to the lysosome (180), a key step in AA-induced anabolic 788 signaling (207). Research is warranted to detail the effects of UA on muscle 789 metabolism in humans.

790

With regards to exercise interactions, UA injection following RE in rats stimulated p70S6K1 at 1h and was maintained 6h later, which began the descent to baseline in the exercise only group, reflecting prolonged mTORC1 activity and thus anabolic potential when RE is combined with UA (177). Despite an unclear mechanism, the authors speculated that IGF-I may contribute to the UA-induced p70S6K1 activation,

796 and previous work supports this hypothesis (142). Contrary, data in humans (not in 797 the context of UA) shows no change in IGF-I but increased anabolic signaling after 798 acute RE (28). In RE trained males, RET 6 x/week (at 60-80% of 1-RM) for 2 months 799 combined with 450mg/day UA improved leg strength but had no effect on lean body 800 mass, although RET alone also had no effects on lean body mass (12). This may be 801 due the fact that the participants had >3 years RET experience, and hypertrophic 802 responses predominate in the early stages of RET (29). To the author's knowledge, no 803 evidence exists regarding UA supplementation combined with EE. An important issue 804 to consider is the low and variable bioavailability of UA following oral ingestion, 805 likely due to its lack of solubility in aqueous solutions (113). This could markedly 806 impact its potential as a nutraceutical. However, recent efforts have been made to 807 improve the bioavailability of UA and other triterpenoids by, for instance, using nano-808 liposomes to aid solubility (271). The varied and low bioavailability of UA in humans 809 is demonstrated by the lack of UA content in some participants following a 1g oral 810 dose, and in those that did display UA content, it was only observed up to 12h post 811 consumption (113). Additional findings show oral UA ingestion (3g) lead to increased 812 plasma UA 2 and 6h post-exercise (50). As such, the true bioavailability of UA in 813 response to time and dose should be investigated further.

814

815 *Phosphatidic acid*

Phosphatidic acid (PA) is a diacyl-glycerophospholipid found endogenously in mammalian cell membranes that can be obtained exogenously from raw cabbage (231). Both endogenous and exogenous PA are believed to positively influence muscle protein metabolism, whereby endogenous PA can be increased by RE and directly binds to mTORC1 influencing MPS. Exogenous PA indirectly stimulates

821 mTORC1 activation (77, 165) via extracellular-signal regulated protein kinase 822 (ERK) dependent (262), and phosphatidylinositol-3-kinase (PI3K) independent 823 (176) mechanisms, and may also attenuate MPB via attenuation of atrophy-related 824 genes (210). Exogenous PA in cultured muscle cells also prevented atrophy in the 825 presence of the atrophy-inducing substances tumor necrosis factor alpha (TNF- α) 826 and dexamethasone (122). Recently, acute PA supplementation in rodents tended to 827 increase MPS in the fasted state, however, PA blunted the whey protein induced rise in MPS (165). Possibly the addition of PA to whey alters the pathways of mTORC1 828 829 activation thus shifting peak MPS (165); research is needed to understand the 830 signaling responses of PA alone versus PA plus whey. In a human case study, orally 831 ingested PA metabolized into lysophosphatidic acid (LPA) and glycerophosphate, 832 increased plasma PA and LPA 30 minutes post-ingestion (of 1.5g PA), which 833 plateaued at 1-3h and remained elevated above baseline at 7h (197). Thus, it seems 834 PA is bioavailable in humans, although beyond 7h post-ingestion the bioavailability 835 is unknown and further studies with a larger cohort are needed to determine the true 836 bioavailability of PA. PA supplementation (750mg daily) combined with 2 months 837 supervised whole body RET in RE trained males found increased lean body mass 838 and cross sectional area compared to the placebo group (129). Conversely, others 839 have shown non-significant increases (+2.6%) in lean body mass, despite utilizing a 840 similar RET and supplementation programme (115). The differential findings 841 between these studies may be due to the fact that training was unsupervised in the 842 later study. To our knowledge no data currently exists assessing the interactions of 843 PA plus EE.

844

845 Combined nutraceuticals

846 Although not the focus of this review, it is worth speculating that combining 847 nutraceuticals may provide multiple benefits to skeletal muscle health or potentiate 848 skeletal muscle health benefits in response to exercise. Consequently, some studies 849 have investigated the potential of combined nutritional 'cocktails'. For example, a 850 supplement containing PA, HMB and VitD in combination with 2 months RET led 851 to greater gains in lean body mass and strength compared to the placebo group, 852 providing support that the combined supplement possessed anabolic properties (73). 853 The combination of VitD, leucine and whey twice daily in tandem with RET 3 854 x/week for 13 weeks prevented the loss of appendicular muscle mass during 855 intentional weight loss in obese males and females (243). The caveat with 856 implementing combined nutritional supplementation is that it is difficult to attribute 857 changes in the endpoint to the responsible individual/ or combination of nutrients, 858 unless rigorous study designs are implement with adequate control groups.

859

860 Conclusion and Future Directions

861 While it is extremely unlikely that a single nutraceutical will prove to be a 'magic 862 bullet', it is clear that certain nutraceuticals, under certain conditions, do indeed 863 possess ergogenic potential. Of the nutrients discussed herein, strong evidence exists 864 for leucine, HMB and Cr for muscle mass; leucine and HMB for protein metabolism; 865 carnitine for fuel metabolism and leucine, HMB, carnitine, Cr, nitrates and β-alanine 866 for athletic (strength or endurance) performance. Further empirical in vivo evidence is 867 required to firmly establish the currently emerging roles of VitD, UA and PA for 868 promoting muscle mass and n-3 PUFA, UA and PA for muscle protein metabolism. 869 This review highlights: 1) the need for better controlled longer duration human 870 studies which investigate the role of individual nutrients on muscle mass, protein/ fuel

metabolism and indices of exercise performance/ adaptation, 2) the lack of *in vivo*"mechanistic" studies, and 3) the need to determine the bioavailability of emerging
nutrients.

874

875 Acknowledgments

876 CS Deane PhD student funded by Bournemouth University. DJ Wilkinson is a post-

877 doctoral research fellow funded through the MRC-ARUK Centre for Musculoskeletal

878 Ageing Research. The MRC-ARUK Centre for Musculoskeletal Ageing Research

879 was funded by grants from the Medical Research Council [grant number

880 MR/K00414X/1] and Arthritis Research UK [grant number 19891] awarded to the

881 Universities of Nottingham and Birmingham. The authors declare no conflicts of

882 interest.

883

884 **References**

- Abramowicz WN, Galloway SDR. Effects of acute versus chronic LCarnitine L-tartrate supplementation on metabolic responses to steady state
 exercise in males and females. *Int J Sport Nutr Exerc Metab* 15: 386–400,
 2005.
- Affourtit C, Bailey SJ, Jones AM, Smallwood MJ, Winyard PG. On the
 mechanism by which dietary nitrate improves human skeletal muscle function. *Front Physiol* 6: 1–8, 2015.
- Agergaard J, Trøstrup J, Uth J, Iversen JV, Boesen A, Andersen JL,
 Schjerling P, Langberg H. Does vitamin-D intake during resistance training
 improve the skeletal muscle hypertrophic and strength response in young and
 elderly men? a randomized controlled trial. *Nutr Metab (Lond)* 12: 32, 2015.
- Alexander JW, Saito H, Trocki O, Ogle CK. The importance of lipid type in the diet after burn injury. *Ann Surg* 204: 1–8, 1986.
- Anderson JE. A Role for Nitric Oxide in Muscle Repair : Nitric Oxide –
 mediated Activation of Muscle Satellite Cells. *Mol Biol Cell* 11: 1859–1874,
 2000.
- Arnold JT, Oliver SJ, Lewis-Jones TM, Wylie LJ, Macdonald JH. Beetroot
 juice does not enhance altitude running performance in well-trained athletes. *Appl Physiol Nutr Metab* 40: 590–5, 2015.
- 905 7. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D,
 906 Smith K, Rennie MJ. Muscle full effect after oral protein: Time-dependent
 907 concordance and discordance between human muscle protein synthesis and

908		mTORC1 signaling. Am J Clin Nutr 92: 1080–1088, 2010.
909	8.	Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and
910		exercise. J Physiol 590: 1049–57, 2012.
911	9.	Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ. Distinct
912		anabolic signalling responses to amino acids in C2C12 skeletal muscle cells.
913		Amino Acids 38: 1533–1539, 2010.
914	10.	Baier S, Johannsen D, Abumrad N, Rathmacher JA, Nissen S, Flakoll P.
915		Year-long changes in protein metabolism in elderly men and women
916		supplemented with a nutrition cocktail of beta-hydroxy-beta-methylbutyrate
917		(HMB), L-arginine, and L-lysine. J Parenter Enter Nutr 33: 71–82, 2009.
918	11.	Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ,
919		Wilkerson DP, Tarr J, Benjamin N, Jones AM. Dietary nitrate
920		supplementation reduces the O2 cost of low-intensity exercise and enhances
921		tolerance to high-intensity exercise in humans. J Appl Physiol 107: 1144–1155,
922		2009.
923	12.	Bang HS, Seo DY, Chung YM, Oh KM, Park JJ, Arturo F, Jeong SH, Kim
924		N, Han J. Ursolic acid-induced elevation of serum irisin augments muscle
925		strength during resistance training in men. Korean J Physiol Pharmacol 18:
926		441–446, 2014.
927	13.	Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J,
928		Petermans J, Reginster J-Y, Bruyère O. The effects of vitamin D on skeletal
929		muscle strength, muscle mass and muscle power: a systematic review and
930		meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 99:
931		4336–45, 2014.
932	14.	Beelen M, Koopman R, Gijsen AP, Vandereyt H, Kies AK, Kuipers H,
933		Saris WH, van Loon LJ. Protein coingestion stimulates muscle protein
934		synthesis during resistance-type exercise. Am J Physiol Endocrinol Metab 295:
935		E70-7, 2008.
936	15.	Bennet WM, Connacher AA, Scrimgeour CM, Smith K, Rennie MJ.
937		Increase in anterior tibialis muscle protein synthesis in healthy man during
938		mixed amino acid infusion: studies of incorporation of [1-13C]leucine. Clin Sci
939		(Lond) 76: 447–454, 1989.
940	16.	Bex T, Chung W, Baguet A, Stegen S, Stautemas J, Achten E, Derave W.
941		Muscle carnosine loading by beta-alanine supplementation is more pronounced
942	1 -	in trained vs. untrained muscles. J Appl Physiol 116: 204–9, 2014.
943	17.	Bhat M, Kalam R, Qadri SS, Madabushi S, Ismail A. Vitamin D deficiency-
944		induced muscle wasting occurs through the ubiquitin proteasome pathway and
945		is partially corrected by calcium in male rats. <i>Endocrinology</i> 154: 4018–29,
946	10	
947	18.	Birch R, Noble D, Greenhaff PL. The influence of dietary creatine
948		supplementation on performance during repeated bouts of maximal isokinetic
949 050	10	cycling in man. Eur J Appl Physiol Occup Physiol 69: 268–76, 1994.
950 951	19.	Bjørnsen T, Salvesen S, Berntsen S, Hetlelid KJ, Stea TH, Lohne-Seiler H, Babda C, Haraldstad K, Baastad T, Kann U, Haugabarg C, Mansaar MA
951 952		Rohde G, Haraldstad K, Raastad T, Køpp U, Haugeberg G, Mansoor MA, Pastani NF, Plamhoff P, Stalavily SP, Saynnas OP, Paulson C, Vitamin C
952 953		Bastani NE , Blomhoff R , Stølevik SB , Seynnes OR , Paulsen G . Vitamin C and E supplementation blunts increases in total lean body mass in elderly men
953 954		and E supplementation blunts increases in total lean body mass in elderly men after strength training. <i>Scand J Med Sci Sports</i> 26: 755–63, 2015.
954 955	20.	Bloch K, Schoenheimer R. Biological Precursors of Creatine. J Biol Chem
955 956	40.	138: 167–194, 1940.
957	21.	Bobeuf F , Labonte M, Dionne IJ, Khalil A. Combined effect of antioxidant
207	<u>~</u> 1.	zover i , zubonte i , zionne io, imani ii. Comonica circet oi antioxidant

958		supplementation and resistance training on oxidative stress markers, muscle
959		and body composition in an elderly population. J Nutr Health Aging 15: 883–9,
960		2011.
961	22.	Bobeuf F, Labonté M, Khalil A, Dionne IJ. Effects of resistance training
962		combined with antioxidant supplementation on fat-free mass and insulin
963		sensitivity in healthy elderly subjects. <i>Diabetes Res Clin Pract</i> 87: e1-3, 2010.
964	23.	Bode-Böger SM, Böger RH, Galland A, Tsikas D, Frölich JC. L-arginine-
965		induced vasodilation in healthy humans: Pharmacokinetic-pharmacodynamic
966		relationship. Br J Clin Pharmacol 46: 489–497, 1998.
967	24.	Bosaeus I, Rothenberg E . Nutrition and physical activity for the prevention
968		and treatment of age-related sarcopenia. <i>Proc Nutr Soc</i> 1: 1–7, 2015.
969	25.	Branch JD . Effect of creatine supplementation on body composition and
970	20.	performance: a meta-analysis. <i>Int J Sport Nutr Exerc Metab</i> 13: 198–226,
971		2003.
972	26.	Brass E . Pharmacokinetic considerations for the therapeutic use of carnitine in
973	20.	hemodialysis patients. <i>Clin Ther</i> 17: 176–185, 1995.
974	27.	Broad EM, Maughan RJ, Galloway SDR. Effects of four weeks L-Carnitine
975	27.	L-tartrate ingestion on substrate utilization during prolonged exercise. Int J
975 976		Sport Nutr Exerc Metab 15: 665–679, 2005.
970 977	28.	Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Phillips BE, Szewczyk
978	20.	NJ, Greenhaff PL, Smith K, Atherton PJ. Synchronous deficits in
978 979		cumulative muscle protein synthesis and ribosomal biogenesis underlie age-
979 980		related anabolic resistance to exercise in humans. J Physiol 594: 7399–741,
980 981		2016. 2016
	20	
982	29.	Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Cweenhaff BL, Smith K, Athenton BL, Skelatel musele hymertrenhy
983		Greenhaff PL, Smith K, Atherton PJ. Skeletal muscle hypertrophy
984 005		adaptations predominate in the early stages of resistance exercise training,
985		matching deuterium oxide-derived measures of muscle protein synthesis and
986		mechanistic target of rapamycin complex 1 signaling. <i>FASEB J</i> 29: 4485–96,
987	20	2015. Bergh MS, Williams DJ, Dhilliam DE, Berge Schiedler, J, Dhile A, Seriah
988	30.	Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith
989		K , Atherton PJ . Skeletal muscle homeostasis and plasticity in youth and
990	2.1	ageing: impact of nutrition and exercise. Acta Physiol 216: 15–41, 2015.
991	31.	Brose A, Parise G, Tarnopolsky MA. Creatine supplementation enhances
992		isometric strength and body composition improvements following strength
993		exercise training in older adults. J Gerontol A Biol Sci Med Sci 58: 11–19,
994	22	
995	32.	Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M,
996		Ziegenfuss T, Lopez H, Landis J, Antonio J. International Society of Sports
997		Nutrition position stand: creatine supplementation and exercise. J Int Soc Sport
998		Nutr 4: 1–8, 2007.
999	33.	Buitrago CG, Arango NS, Boland RL. 1α,25(OH)2D3-dependent modulation
1000		of Akt in proliferating and differentiating C2C12 skeletal muscle cells. J Cell
1001		<i>Biochem</i> 113: 1170–81, 2012.
1002	34.	Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendaño M,
1003		Hirsch S. Effects of vitamin D supplementation and exercise training on
1004		physical performance in Chilean vitamin D deficient elderly subjects. Exp
1005	- -	<i>Gerontol</i> 41: 746–752, 2006.
1006	35.	Buono R, Vantaggiato C, Pisa V, Azzoni E, Bassi MT, Brunelli S, Sciorati
1007		C, Clementi E. Nitric oxide sustains long-term skeletal muscle regeneration by

1008		regulating fate of satellite cells via signaling pathways requiring Vangl2 and
1009		cyclic GMP. Stem Cells 30: 197–209, 2012.
1010	36.	Burd NA, West DWD, Moore DR, Atherton PJ, Staples AW, Prior T,
1011		Tang JE, Rennie MJ, Baker SK, Phillips SM. Enhanced Amino Acid
1012		Sensitivity of Myofibrillar Protein Synthesis Persists for up to 24 h after
1013		Resistance Exercise in Young Men. J Nutr 141: 568–73, 2011.
1014	37.	Burdge GC, Calder PC. Introduction to fatty acids and lipids. World Rev Nutr
1015		<i>Diet</i> 112: 1–16, 2015.
1016	38.	C. Harris R, Dunnett M, Greenhaff PL. Carnosine and taurine contents in
1017		individual fibres of human vastus lateralis muscle. J Sports Sci 16: 639-643,
1018		1998.
1019	39.	Campia U, Panza JA. Flavanol-rich cocoa a promising new dietary
1020		intervention to reduce cardiovascular risk in type 2 diabetes? J Am Coll
1021		<i>Cardiol</i> 51: 2150–2, 2008.
1022	40.	Capiati D, Benassati S, Boland RL. 1,25(OH)2-vitamin D3 induces
1023		translocation of the vitamin D receptor (VDR) to the plasma membrane in
1024		skeletal muscle cells. J Cell Biochem 86: 128–35, 2002.
1025	41.	Carrillo AE, Flynn MG, Pinkston C, Markofski MM, Jiang Y, Donkin SS,
1026		Teegarden D . Impact of vitamin D supplementation during a resistance
1027		training intervention on body composition, muscle function, and glucose
1028		tolerance in overweight and obese adults. Clin Nutr 32: 375-81, 2013.
1029	42.	Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL.
1030		Creatine ingestion favorably affects performance and muscle metabolism
1031		during maximal exercise in humans. Am J Physiol 271: E31-7, 1996.
1032	43.	Casey A, Greenhaff PL. Does dietary creatine supplementation play a role in
1033		skeletal muscle metabolism and performance? Am J Clin Nutr 72: 607S-617S,
1034		2000.
1035	44.	Casperson SL, Sheffield-Moore M, Hewlings SJ, Paddon-Jones D. Leucine
1036		supplementation chronically improves muscle protein synthesis in older adults
1037		consuming the RDA for protein. Clin Nutr 31: 512–9, 2012.
1038	45.	Ceglia L. Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr
1039		Metab Care 12: 628–33, 2009.
1040	46.	Ceglia L, Niramitmahapanya S, da Silva Morais M, Rivas DA, Harris SS,
1041		Bischoff-Ferrari H, Fielding RA, Dawson-Hughes B. A randomized study
1042		on the effect of vitamin d3 supplementation on skeletal muscle morphology
1043		and vitamin d receptor concentration in older women. J Clin Endocrinol Metab
1044		98: E1927-35, 2013.
1045	47.	Cermak NM, Van Loon LJC. The use of carbohydrates during exercise as an
1046		ergogenic aid. Sport. Med. 43: 1139-1155, 2013.
1047	48.	Cermak NM, Res P, Stinkens R, Lundberg JO, Gibala MJ, van Loon LJ.
1048		No improvement in endurance performance after a single dose of beetroot
1049		juice. Int J Sport Nutr Exerc Metab 22: 470–8, 2012.
1050	49.	Cermak NM, Res PT, de Groot LCPGM, Saris WHM, van Loon LJC.
1051		Protein supplementation augments the adaptive response of skeletal muscle to
1052		resistance-type exercise training: a meta-analysis. Am J Clin Nutr 96: 1454–64,
1053		2012.
1054	50.	Church DD, Schwarz NA, Spillane MB, McKinley-Barnard SK, Andre
1055		TL, Ramirez AJ, Willoughby DS. L-Leucine Increases Skeletal Muscle IGF-
1056		1 but Does Not Differentially Increase Akt/mTORC1 Signaling and Serum
1057		IGF-1 Compared to Ursolic Acid in Response to Resistance Exercise in

1058		Resistance-Trained Men. J Am Coll Nutr 5724: 1–12, 2016.
1059	51.	Churchward-Venne TA, Breen L, Di Donato DM, Hector AJ, Mitchell CJ,
1060		Moore DR, Stellingwerff T, Breuille D, Offord EA, Baker SK, Phillips SM.
1061		Leucine supplementation of a low-protein mixed macronutrient beverage
1062		enhances myofibrillar protein synthesis in young men: A double-blind,
1063		randomized trial1-3. Am J Clin Nutr 99: 276–286, 2014.
1064	52.	Churchward-Venne TA, Cotie LM, MacDonald MJ, Mitchell CJ, Prior T,
1065		Baker SK, Phillips SM. Citrulline does not enhance blood flow, microvascular
1066		circulation, or myofibrillar protein synthesis in elderly men at rest or following
1067		exercise. Am J Physiol Endocrinol Metab 307: E71-83, 2014.
1068	53.	Close G, Hamilton L, Philp A, Burke L, Morton J. New Strategies in Sport
1069		Nutrition to Increase Exercise Performance. Free Radic Biol Med 98: 144-58,
1070		2016.
1071	54.	Cooke MB, Rybalka E, Williams AD, Cribb PJ, Hayes A. Creatine
1072		supplementation enhances muscle force recovery after eccentrically-induced
1073		muscle damage in healthy individuals. J Int Soc Sports Nutr 6: 13, 2009.
1074	55.	Cooke WH, Grandjean PW, Barnes WS. Effect of oral creatine
1075		supplementation on power output and fatigue during bicycle ergometry. J Appl
1076		<i>Physiol</i> 78: 670–673, 1995.
1077	56.	Crossland H, Kazi AA, Lang CH, Timmons JA, Pierre P, Wilkinson DJ,
1078		Smith K, Szewczyk NJ, Atherton PJ. Focal adhesion kinase is required for
1079		IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-
1080		associated pathway. Am J Physiol Endocrinol Metab 305: E183-93, 2013.
1081	57.	Culbertson JY, Kreider RB, Greenwood M, Cooke M. Effects of Beta-
1082		alanine on muscle carnosine and exercise performance: A review of the current
1083		literature. Nutrients 2: 75–98, 2010.
1084	58.	Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P,
1085		Wackerhage H, Taylor PM, Rennie MJ. Anabolic signaling deficits underlie
1086		amino acid resistance of wasting, aging muscle. FASEB J 19: 422–4, 2005.
1087	59.	Cuthbertson DJ, Babraj J, Smith K, Wilkes E, Fedele MJ, Esser K, Rennie
1088		M. Anabolic signaling and protein synthesis in human skeletal muscle after
1089		dynamic shortening or lengthening exercise. Am J Physiol Endocrinol Metab
1090		290: E731-8, 2006.
1091	60.	Décombaz J, Beaumont M, Vuichoud J, Bouisset F, Stellingwerff T. Effect
1092		of slow-release β -alanine tablets on absorption kinetics and paresthesia. <i>Amino</i>
1093		Acids 43: 67–76, 2012.
1094	61.	Delarue J, Couet C, Cohen R, Bréchot JF, Antoine JM, Lamisse F. Effects
1095		of fish oil on metabolic responses to oral fructose and glucose loads in healthy
1096		humans. Am J Physiol 270: E353–E362, 1996.
1097	62.	Delarue J, Labarthe F, Cohen R. Fish-oil supplementation reduces
1098		stimulation of plasma glucose fluxes during exercise in untrained males. Br J
1099		Nutr 90: 777–786, 2003.
1100	63.	Dempsey RL, Mazzone MF, Meurer LN. Does oral creatine supplementation
1101		improve strength? A meta-analysis. J Fam Pract 51: 945–51, 2002.
1102	64.	Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K,
1103		Wise J a, Achten E. Beta-Alanine supplementation augments muscle
1104		carnosine content and attenuates fatigue during repeated isokinetic contraction
1105		bouts in trained sprinters. J Appl Physiol 103: 1736–1743, 2007.
1106	65.	Deutz NEP, Pereira SL, Hays NP, Oliver JS, Edens NK, Evans CM, Wolfe
1107		RR . Effect of β -hydroxy- β -methylbutyrate (HMB) on lean body mass during

1108		10 days of bed rest in older adults. Clin Nutr 32: 704-712, 2013.
1109	66.	Devries MC, Phillips SM. Creatine supplementation during resistance training
1110		in older adults-a meta-analysis. Med Sci Sports Exerc 46: 1194–203, 2014.
1111	67.	Dieck ST, Heuer H, Ehrchen J, Otto C, Bauer K. The peptide transporter
1112		PepT2 is expressed in rat brain and mediates the accumulation of the
1113		fluorescent dipeptide derivative β -Ala-Lys-N ϵ -AMCA in astrocytes. <i>Glia</i> 25:
1114		10–20, 1998.
1115	68.	Duncan C, Dougall H, Johnston P, Green S, Brogan R, Leifert C, Smith L,
1116		Golden M, Benjamin N. Chemical generation of nitric oxide in the mouth
1117		from the enterosalivary circulation of dietary nitrate. Nat Med 1: 546-551,
1118		1995.
1119	69.	Dyle MC, Ebert SM, Cook DP, Kunkel SD, Fox DK, Bongers KS, Bullard
1120		SA, Dierdorff JM, Adams CM. Systems-based Discovery of Tomatidine as a
1121		Natural Small Molecule Inhibitor of Skeletal Muscle Atrophy. J Biol Chem
1122		289: 14913–14924, 2014.
1123	70.	Earnest CP, Snell PG, Rodriguez R, Almada AL, Mitchell TL. The effect of
1124		creatine monohydrate ingestion on anaerobic power indices, muscular strength
1125		and body composition. Acta Physiol Scand 153: 207–9, 1995.
1126	71.	Ebert SM, Dyle MC, Bullard SA, Dierdorff JM, Murry DJ, Fox DK,
1127		Bongers KS, Lira VA, Meyerholz DK, Talley JJ, Adams CM. Identification
1128		and Small Molecule Inhibition of an ATF4-dependent Pathway to Age-related
1129		Skeletal Muscle Weakness and Atrophy. J Biol Chem 290: 25497–25511,
1130		2015.
1131	72.	El-Hajj Fuleihan G, Nabulsi M, Tamim H, Maalouf J, Salamoun M,
1132	,	Khalife H, Choucair M, Arabi A, Vieth R. Effect of vitamin D replacement
1133		on musculoskeletal parameters in school children: a randomized controlled
1134		trial. J Clin Endocrinol Metab 91: 405–412, 2006.
1135	73.	Escalante G, Alencar M, Haddock B, Harvey P . The effects of phosphatidic
1136	,	acid supplementation on strength, body composition, muscular endurance,
1137		power, agility, and vertical jump in resistance trained men. J Int Soc Sports
1138		Nutr 13: 24, 2016.
1139	74.	Escobar J, Frank JW, Suryawan A, Nguyen H V, Van Horn CG, Hutson
1140	,	SM, Davis TA. Leucine and alpha-ketoisocaproic acid, but not norleucine,
1141		stimulate skeletal muscle protein synthesis in neonatal pigs. J Nutr 140: 1418–
1142		24, 2010.
1143	75.	Evans WJ . Skeletal muscle loss: Cachexia, sarcopenia, and inactivity. Am J
1144	, 0.	<i>Clin Nutr</i> 91: 1123–1127, 2010.
1145	76.	Everaert I, Mooyaart A, Baguet A, Zutinic A, Baelde H, Achten E, Taes Y,
1146	/0.	De Heer E , Derave W . Vegetarianism, female gender and increasing age, but
1147		not CNDP1 genotype, are associated with reduced muscle carnosine levels in
1148		humans. Amino Acids 40: 1221–1229, 2011.
1149	77.	Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic
1150	, , .	acid-mediated mitogenic activation of mTOR signaling. <i>Science (80-)</i> 294:
1150		1942–1945, 2001.
1151	78.	Fetterman JW , Zdanowicz MM . Therapeutic potential of n-3 polyunsaturated
1152	70.	fatty acids in disease. Am J Heal Pharm 66: 1169–1179, 2009.
1155	79.	Fischer R, Konkel A, Mehling H, Blossey K, Gapelyuk A, Wessel N, von
1154	12.	Schacky C, Dechend R, Muller DN, Rothe M, Luft FC, Weylandt K,
1155		Schunck W-H. Dietary Omega-3 Fatty Acids Modulate the Eicosanoid Profile
1150		in Man Primarily via the CYP-epoxygenase Pathway. <i>J Lipid Res</i> 55: 1150–
1107		minum rinnumy via the Crr epoxygenaser aniway. 5 Lipia Res 55. 1150-

1158		1164, 2014.
1150	80.	Fisher NDL, Hughes M, Gerhard-Herman M, Hollenberg NK. Flavanol-
1160	00.	rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J
1161		<i>Hypertens</i> 21: 2281–6, 2003.
1162	81.	Forman HJ, Augusto O, Brigelius-Flohe R, Dennery PA, Kalyanaraman
1163		B, Ischiropoulos H, Mann GE, Radi R, Roberts LJ, Vina J, Davies KJA.
1164		Even free radicals should follow some rules: A Guide to free radical research
1165		terminology and methodology. Free Radic Biol Med 78: 233-235, 2015.
1166	82.	Fuller JC, Sharp RL, Angus HF, Khoo PY, Rathmacher JA. Comparison of
1167		availability and plasma clearance rates of β -hydroxy- β -methylbutyrate delivery
1168		in the free acid and calcium salt forms. Br J Nutr 114: 1403–9, 2015.
1169	83.	Gallagher JC. The effects of calcitriol on falls and fractures and physical
1170		performance tests. J Steroid Biochem Mol Biol 89-90: 497-501, 2004.
1171	84.	Gaudichon C, Mahé S, Benamouzig R, Luengo C, Fouillet H, Daré S, Van
1172		Oycke M, Ferrière F, Rautureau J, Tomé D. Net postprandial utilization of
1173		[15N]-labeled milk protein nitrogen is influenced by diet composition in
1174		humans. J Nutr 129: 890–5, 1999.
1175	85.	Gingras A-A, White PJ, Chouinard PY, Julien P, Davis TA, Dombrowski
1176		L, Couture Y, Dubreuil P, Myre A, Bergeron K, Marette A, Thivierge MC.
1177		Long-chain omega-3 fatty acids regulate bovine whole-body protein
1178		metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1
1179	0.6	pathway and insulin sensitivity. J Physiol 579: 269–84, 2007.
1180	86.	Girgis CM . Vitamin D and muscle function in the elderly: the elixir of youth?
1181	07	Curr Opin Clin Nutr Metab Care 17: 546–550, 2014.
1182	87.	Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The
1183 1184		roles of vitamin D in skeletal muscle: form, function, and metabolism. <i>Endocr Rev</i> 34: 33–83, 2013.
1184	88.	Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. Vitamin D
1185	00.	Signaling Regulates Proliferation, Differentiation and Myotube Size in C2C12
1187		Skeletal Muscle Cells. <i>Endocrinology</i> : 1–11, 2013.
1188	89.	Girgis CM, Mokbel N, Minn Cha K, Houweling PJ, Abboud M, Fraser
1189	09.	DR, Mason RS, Clifton-Bligh RJ, Gunton JE. The Vitamin D Receptor
1190		(VDR) is Expressed in Skeletal Muscle of Male Mice and Modulates 25-
1191		Hydroxyvitamin D (250HD) Uptake in Myofibers. <i>Endocrinology</i> 155: 3227–
1192		3237, 2014.
1193	90.	Di Girolamo FG, Situlin R, Mazzucco S, Valentini R, Toigo G, Biolo G.
1194		Omega-3 fatty acids and protein metabolism: enhancement of anabolic
1195		interventions for sarcopenia. Curr Opin Clin Nutr Metab Care 17: 145-50,
1196		2014.
1197	91.	Glynn EL, Fry CS, Timmerman KL, Drummond MJ, Volpi E, Rasmussen
1198		BB . Addition of carbohydrate or alanine to an essential amino acid mixture
1199		does not enhance human skeletal muscle protein anabolism. J Nutr 143: 307-
1200		14, 2013.
1201	92.	Gomez-Cabrera MC, Borras C, Pallardo F V, Sastre J, Ji LL, Vina J.
1202		Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular
1203	03	adaptations to exercise in rats. <i>J Physiol</i> 567: 113–120, 2005.
1204	93.	Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Ballardo E V, Sastra L, Vião L, Oral administration of vitamin C dopressos
1205		Pallardo F V , Sastre J , Viña J . Oral administration of vitamin C decreases
1206 1207		muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. <i>Am J Clin Nutr</i> 87: 142–149, 2008.
1207		endurance performance. Am J Cun Ivan 67. 142–149, 2000.

1208	94.	Gonzalez JT, Stevenson EJ. New perspectives on nutritional interventions to
1209	<i>y</i> 1.	augment lipid utilisation during exercise. <i>Br J Nutr</i> 107: 339–349, 2012.
1210	95.	Gorissen SHM, Burd NA, Hamer HM, Gijsen AP, Groen BB, van Loon
1211		LJC. Carbohydrate coingestion delays dietary protein digestion and absorption
1212		but does not modulate postprandial muscle protein accretion. J Clin Endocrinol
1213		<i>Metab</i> 99: 2250–8, 2014.
1214	96.	Graham TE, Battram DS, Dela F, El-Sohemy A, Thong FSL. Does caffeine
1215		alter muscle carbohydrate and fat metabolism during exercise? Appl Physiol
1216		Nutr Metab 33: 1311–8, 2008.
1217	97.	Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL.
1218		Carbohydrate ingestion augments skeletal muscle creatine accumulation during
1219		creatine supplementation in humans. Am J Physiol 271: E821–E826, 1996.
1220	98.	Green AL, Simpson EJ, Littlewood JJ, Macdonald IA, Greenhaff PL.
1221		Carbohydrate ingestion augments creatine retention during creatine feeding in
1222		humans. Acta Physiol Scand 158: 195-202, 1996.
1223	99.	Greenhaff PL, Bodin K, Soderlund K, Hultman E. Effect of oral creatine
1224		supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol
1225		266: E725–E730, 1994.
1226	100.	Greenhaff PL, Casey A, Short AH, Harris R, Soderlund K, Hultman E.
1227		Influence of oral creatine supplementation of muscle torque during repeated
1228		bouts of maximal voluntary exercise in man. Clin Sci (Lond) 84: 565-71, 1993.
1229	101.	Greenhaff PL, Hultman E, Harris RC. Carbohydrate Metabolism. In:
1230		Principles of Exercise Biochemistry. Basel: KARGER, 2003, p. 108–151.
1231	102.	Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield
1232		R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ.
1233		Disassociation between the effects of amino acids and insulin on signaling,
1234		ubiquitin ligases, and protein turnover in human muscle. <i>Am J Physiol</i>
1235	102	<i>Endocrinol Metab</i> 295: E595-604, 2008.
1236	103.	Le Guen M, Chaté V, Hininger-Favier I, Laillet B, Morio B, Pieroni G,
1237 1238		Schlattner U, Pison C, Dubouchaud H. A 9-wk docosahexaenoic acid-
1238		enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats. <i>Am J Physiol Endocrinol Metab</i>
1239		310: E213-24, 2016.
1240	104.	Guo Z , Burguera B , Jensen MD . Kinetics of intramuscular triglyceride fatty
1241	104.	acids in exercising humans. J Appl Physiol 89: 2057–2064, 2000.
1243	105.	Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu
1244	105.	SH, Kim S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the
1245		mTORC1-signaling pathway. <i>Cell</i> 149: 410–424, 2012.
1246	106.	Harper P, Elwin CE, Cederblad G. Pharmacokinetics of intravenous and oral
1247		bolus doses of L-carnitine in healthy subjects. Eur J Clin Pharmacol 35: 555-
1248		562, 1988.
1249	107.	Harris RC, Söderlund K, Hultman E. Elevation of creatine in resting and
1250		exercised muscle of normal subjects by creatine supplementation. Clin Sci
1251		(Lond) 83: 367–74, 1992.
1252	108.	Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ,
1253		Fallowfield JL, Hill CA, Sale C, Wise JA. The absorption of orally supplied
1254		β -alanine and its effect on muscle carnosine synthesis in human vastus lateralis.
1255		Amino Acids 30: 279–289, 2006.
1256	109.	Heiss C, Kleinbongard P, Dejam A, Perré S, Schroeter H, Sies H, Kelm M.
1257		Acute consumption of flavanol-rich cocoa and the reversal of endothelial

 Heymsfield SB, Arteaga C, McManus C, Smith J, Moffüt S. Measurement of muscle mass in humans : validity of the 24-hour urinary creatinine method. <i>Am J Clin Nutr</i> 37: 478–494, 1983. Higashida K, Kim SH, Higuchi M, Holloszy JO, Han D-H. Normal adaptations to exercise despite protection against oxidative stress. <i>AJP</i> <i>Endocrinol Metab</i> 301: E779–E784, 2011. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA, Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. <i>Jmino Acids</i> 32: 225–233, 2007. Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. <i>FASEB J</i> 28, 2014. Hodgson AB, Randel RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nutr</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF, Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062– 2072, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exer Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraremer WJ, Häkkinen K, Mero AA. Acute and long-term effects of	1258		dysfunction in smokers. J Am Coll Cardiol 46: 1276-83, 2005.
 <i>Am J Clin Nutr</i> 37: 478–494, 1983. Higashida K, Kim SH, Higuchi M, Holloszy JO, Han D-H. Normal adaptations to excreise despite protection against oxidative stress. <i>AJP</i> <i>Endocrinol Metab</i> 301: E779–E784, 2011. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of B-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. <i>Amino Acids</i> 32: 225–233, 2007. Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. <i>FASEB J</i> 28, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nur</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nur</i> 9: 47, 2012. Holick MF, Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062– 2072, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Hufman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline, Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297– 308, 2009. IyaJ	1259	110.	Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S. Measurement
 Higashida K, Kim SH, Higuchi M, Holloszy JO, Han D-H. Normal adaptations to exercise despite protection against oxidative stress. <i>AJP</i> <i>Endocrinol Metab</i> 301: E779–E784, 2011. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of P-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. <i>Amino Acids</i> 32: 225–233, 2007. Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokincic and safety study of ursolic acid in healthy adult volunteers. <i>FASEB J</i> 28, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nur</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF, Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062– 2072, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heancy RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases flat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Laafar R, De Larichaudy J, Chanon S, Euthine V,	1260		of muscle mass in humans : validity of the 24-hour urinary creatinine method.
 adaptations to exercise despite protection against oxidative stress. <i>AJP</i> <i>Endocrinol Metab</i> 301: E779–E784, 2011. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. <i>Amino Acids</i> 32: 225–233, 2007. Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. <i>FASEB</i> 228, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nut</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nut</i> 9: 47, 2012. Holick MF, Righ prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplemention with fish oil increases fat oxidation during exercise in young men. <i>J. Exerc Physiol</i> 71: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in	1261		Am J Clin Nutr 37: 478–494, 1983.
 Endocrinol Metab 301: E779-É784, 2011. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of β-alanice supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. <i>Amino Acids</i> 32: 225–233, 2007. Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. <i>FASEB J</i> 28, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nur</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062–2072, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heancy RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of <i>in Endocrinol Metab</i> 96: 1911–1930, 2011. Hufiman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Anino Acids</i> 37: 297–308, 2009. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>J Appl Physiol</i> 54	1262	111.	Higashida K, Kim SH, Higuchi M, Holloszy JO, Han D-H. Normal
 Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. <i>Amino Acids</i> 32: 225–233, 2007. Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. <i>FASEB J</i> 28, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nutr</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062– 2072, 2006. Holick MF, Biphkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Hufman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297– 308, 2009. Ivy JL, Katz a L, Cutter CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaaster I, Leyarifeld SB, Wang Z, Ross R. Skeletal mu	1263		adaptations to exercise despite protection against oxidative stress. AJP
 Wise JA. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. <i>Amino Acids</i> 32: 225–233, 2007. Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. <i>FASEB J</i> 28, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nutr</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062–2072, 2006. Holick MF, High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney PP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline, Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Humi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkime K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988.	1264		Endocrinol Metab 301: E779–E784, 2011.
 concentrations and high intensity cycling capacity. Amino Acids 32: 225–233, 2007. Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. FASEB J 28, 2014. Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. FASEB J 28, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. Adv Nutr 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. J Int Soc Sports Nutr 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. J Clin Invest 116: 2062–2072, 2006. Holick MF, Bigh prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37: 297–308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis af	1265	112.	Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK,
 2007. Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. <i>FASEB J</i> 28, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nutr</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062–2072, 2006. Holick MF. High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. Ivy L, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaansen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000.	1266		
 Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. <i>FASEB J</i> 28, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nutr</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Willäms DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062–2072, 2006. Holick MF, High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells thro	1267		concentrations and high intensity cycling capacity. Amino Acids 32: 225-233,
 clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. <i>FASEB J</i> 28, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nutr</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062–2072, 2006. Holick MF. High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murrad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. Iyy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipasc D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013.<td></td><td></td><td></td>			
 volunteers. <i>FASEB J</i> 28, 2014. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nutr</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF, Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062– 2072, 2006. Holick MF, High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exere Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297– 308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipasc D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass a		113.	
 Hudgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nutr</i> 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Hoffman JR, Stout JR, Wills AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062– 2072, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297– 308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mT			1 5 5
 1273 on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. <i>Adv Nutr</i> 4: 129-40, 2013. 115. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. 116. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062–2072, 2006. 117. Holick MF. High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. 118. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. 118. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. 120. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. 121. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. 122. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physio</i>			
 mechanisms. Adv Nutr 4: 129–40, 2013. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. J Int Soc Sports Nutr 9: 47, 2012. Holick MF, Resurrection of vitamin D and rickets. J Clin Invest 116: 2062–2072, 2006. Holick MF, High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37: 297–308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. J Appl Physiol 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn		114.	
 Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. J Int Soc Sports Nutr 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. J Clin Invest 116: 2062– 2072, 2006. Holick MF, High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37: 297– 308, 2009. Iy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. J Appl Physiol 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			• • • • • •
 Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062– 2072, 2006. Holick MF. High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derck M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297– 308, 2009. Iyy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			,
 Jäger R. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062–2072, 2006. Holick MF. High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heynsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		115.	
 thickness and strength gains in resistance-trained men. <i>J Int Soc Sports Nutr</i> 9: 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062–2072, 2006. Holick MF. High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 47, 2012. Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062–2072, 2006. Holick MF. High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Ponace 			
 Holick MF. Resurrection of vitamin D and rickets. <i>J Clin Invest</i> 116: 2062–2072, 2006. Holick MF. High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 2072, 2006. 117. Holick MF. High prevalence of vitamin D inadequacy and implications for health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. 1284 118. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. 119. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. 120. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297– 308, 2009. 121. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. 122. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 117. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 81: 353–73, 2006. 118. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J <i>Clin Endocrinol Metab</i> 96: 1911–1930, 2011. 119. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol 7: 48–57, 2004. 120. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37: 297– 308, 2009. 121. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64: 1480–1485, 1988. 122. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal 11: 55, 2013. 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. J Appl Physiol 89: 81–88, 2000. 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		116.	
 health. <i>Mayo Clin Proc</i> 81: 353–73, 2006. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. <i>J Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297– 308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J <i>Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37: 297– 308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. J Appl Physiol 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		117.	
 Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J <i>Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37: 297– 308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. J Appl Physiol 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		110	
 of vitamin D deficiency: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37: 297– 308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. J Appl Physiol 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		118.	
 <i>Clin Endocrinol Metab</i> 96: 1911–1930, 2011. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 119. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol 7: 48–57, 2004. 120. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37: 297– 308, 2009. 121. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64: 1480–1485, 1988. 1298 122. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal 11: 55, 2013. 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. J Appl Physiol 89: 81–88, 2000. 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 Michaelson TRT, Jeponline. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol 7: 48–57, 2004. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37: 297– 308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. J Appl Physiol 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		110	
 fat oxidation during exercise in young men. <i>J Exerc Physiol</i> 7: 48–57, 2004. 120. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297– 308, 2009. 121. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl</i> <i>Physiol</i> 64: 1480–1485, 1988. 122. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell</i> <i>Commun Signal</i> 11: 55, 2013. 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		119.	
 120. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297– 308, 2009. 121. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl</i> <i>Physiol</i> 64: 1480–1485, 1988. 122. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell</i> <i>Commun Signal</i> 11: 55, 2013. 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297– 308, 2009. I21. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl</i> <i>Physiol</i> 64: 1480–1485, 1988. I22. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell</i> <i>Commun Signal</i> 11: 55, 2013. I23. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. I24. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		120	
 ingestion on muscle hypertrophy and gene expression. <i>Amino Acids</i> 37: 297–308, 2009. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		120.	
 308, 2009. 1295 121. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl</i> <i>Physiol</i> 64: 1480–1485, 1988. 1298 122. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell</i> <i>Commun Signal</i> 11: 55, 2013. 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			-
 1295 121. Ivy JL, Katz a L, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl</i> <i>Physiol</i> 64: 1480–1485, 1988. 1298 122. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell</i> <i>Commun Signal</i> 11: 55, 2013. 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 synthesis after exercise: effect of time of carbohydrate ingestion. <i>J Appl Physiol</i> 64: 1480–1485, 1988. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		121	
 1297 Physiol 64: 1480–1485, 1988. 1298 122. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, 1299 Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size 1300 of skeletal muscle cells through the activation of mTOR signaling. <i>Cell</i> 1301 <i>Commun Signal</i> 11: 55, 2013. 1302 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and 1303 distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 1304 2000. 1305 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, 1306 Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		121.	
 1298 122. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell</i> <i>Commun Signal</i> 11: 55, 2013. 1302 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 Bertolino P, Vidal H, Lefai E, Némoz G. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. <i>Cell Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		122	
 of skeletal muscle cells through the activation of mTOR signaling. <i>Cell</i> <i>Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		122.	
 <i>Commun Signal</i> 11: 55, 2013. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 1302 123. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. 1305 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
 distribution in 468 men and women aged 18 – 88 yr. <i>J Appl Physiol</i> 89: 81–88, 2000. 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		123	
 1304 2000. 1305 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 		1201	
 1305 124. Jeong J-W, Shim J-J, Choi I-D, Kim S-H, Ra J, Ku HK, Lee DE, Kim T-Y, 1306 Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace 			
1306Jeung W, Lee J-H, Lee KW, Huh C-S, Sim J-H, Ahn Y-T. Apple Pomace		124.	
			8 7 7 7 7 7 7 7

 125. Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee M-J, Smith SB, Spencer TE, Fried SK, Wu G. Dietary L-Arginine Supplementation Reduces White Fat Gain and Enhances Skeletal Muscle and Brown Fat Masses in Diet-Induce Obese Rats 1–3. <i>J Nutr</i> 139: 230–237, 2008. 126. Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vameeq J Creatine biosynthesis and transport in health and disease. <i>Biochimie</i> 119: 146–165, 2015. 127. Jones AM. Dietary nitrate supplementation and exercise performance. <i>Sport Med</i> 44, 2014. 128. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. 129. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. 130. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. 131. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. 132. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–88, 2000. 133. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 Fat Gain and Enhances Skeletal Muscle and Brown Fat Masses in Diet-Induce Obese Rats 1–3. <i>J Nutr</i> 139: 230–237, 2008. 126. Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J Creatine biosynthesis and transport in health and disease. <i>Biochimie</i> 119: 146– 165, 2015. 127. Jones AM. Dietary nitrate supplementation and exercise performance. <i>Sport</i> <i>Med</i> 44, 2014. 128. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. 129. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. 130. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. 131. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. 132. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 21058–88, 2000. 133. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 Obese Rats 1–3. J Nutr 139: 230–237, 2008. Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J Creatine biosynthesis and transport in health and disease. <i>Biochimie</i> 119: 146–165, 2015. Jones AM. Dietary nitrate supplementation and exercise performance. <i>Sport Med</i> 44, 2014. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 21055–88, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 1313 126. Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J Creatine biosynthesis and transport in health and disease. <i>Biochimie</i> 119: 146– 165, 2015. 127. Jones AM. Dietary nitrate supplementation and exercise performance. <i>Sport</i> <i>Med</i> 44, 2014. 128. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. 129. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. 130. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. 131. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. 132. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. 133. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J Creatine biosynthesis and transport in health and disease. <i>Biochimie</i> 119: 146– 165, 2015. Jones AM. Dietary nitrate supplementation and exercise performance. <i>Sport</i> <i>Med</i> 44, 2014. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J Creatine biosynthesis and transport in health and disease. <i>Biochimie</i> 119: 146– 165, 2015. Jones AM. Dietary nitrate supplementation and exercise performance. <i>Sport</i> <i>Med</i> 44, 2014. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 Creatine biosynthesis and transport in health and disease. <i>Biochimie</i> 119: 146–165, 2015. Jones AM. Dietary nitrate supplementation and exercise performance. <i>Sport Med</i> 44, 2014. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 1317 127. Jones AM. Dietary nitrate supplementation and exercise performance. <i>Sport</i> <i>Med</i> 44, 2014. 1319 128. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. 1322 129. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. 130. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. 131. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. 132. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. 133. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 <i>Med</i> 44, 2014. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 <i>Med</i> 44, 2014. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 1319 128. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. 1322 129. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. 130. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. 131. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. 132. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–88, 2000. 133. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 supplementation on the inflammatory response to eccentric strength exercise. <i>Sport Sci Med</i> 10: 432–438, 2011. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochem Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 <i>Sport Sci Med</i> 10: 432–438, 2011. Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–88, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 acid enhances mTOR signaling and resistance exercise induced hypertrophy. <i>Nutr Metab (Lond)</i> 11: 29, 2014. 130. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. 131. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochem Biophys Res Commun</i> 432: 593–598, 2013. 132. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. 133. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 <i>Nutr Metab (Lond)</i> 11: 29, 2014. <i>Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin</i> D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. <i>J Am Geriatr Soc</i> 58: 1299–1310, 2010. <i>Kamolrat T, Gray SR.</i> The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen</i> <i>Biophys Res Commun</i> 432: 593–598, 2013. <i>Karim M, McCormick K, Kappagoda CT.</i> Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 21058–88, 2000. <i>Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,</i>
 Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D. Vitamin D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. J Am Geriatr Soc 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 D Treatment for the Prevention of Falls in Older Adults: Systematic Review and Meta-Analysis. J Am Geriatr Soc 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. Biochen Biophys Res Commun 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 and Meta-Analysis. J Am Geriatr Soc 58: 1299–1310, 2010. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen</i> <i>Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 acid on protein synthesis and breakdown in murine C2C12 myotubes. <i>Biochen</i> <i>Biophys Res Commun</i> 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 Biophys Res Commun 432: 593–598, 2013. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 1332 132. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. <i>J Nutr</i> 130: 2105S–8S, 2000. 1334 133. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
 endothelium-dependent relaxation. J Nutr 130: 2105S–8S, 2000. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
1334 133. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT,
1335 Smith M, Wise JA. The effects of 10 weeks of resistance training combined
1336 with b-alanine supplementation on whole body strength, force production,
1337 muscular endurance and body composition. <i>Amino Acids</i> 34: 547–554, 2008.
1338 134. Kerksick CM, Rasmussen CJ, Lancaster SL, Magu B, Smith P, Melton C,
1339 Greenwood M, Almada AL, Earnest CP, Kreider RB. The effects of protein
and amino acid supplementation on performance and training adaptations
during ten weeks of resistance training. J Strength Cond Res 20: 643–53, 2006
1342 135. Kimball SR . Integration of signals generated by nutrients, hormones, and
1343 exercise in skeletal muscle. : 4–9, 2013.
1344 136. Knitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R. Effects of
beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J
1346 Appl Physiol 89: 1340–1344, 2000.
1347 137. Koevering M Van, Nissen S. Oxidation of leucine and a-ketoisocaproate to b
hydroxy-b-methylbutyrate in vivo. <i>Am J Physiol</i> 262: 27–31, 1992.
1349 138. Koopman R, Beelen M, Stellingwerff T, Pennings B, Saris WHM, Kies
1350 AK , Kuipers H , van Loon LJC . Coingestion of carbohydrate with protein
does not further augment postexercise muscle protein synthesis. <i>Am J Physiol</i>
1352 <i>Endocrinol Metab</i> 293: E833-42, 2007.
1353 139. Kraemer WJ, Fleck SJ, Deschenes MR. Exercise Physiology: Integrating
1354 <i>Theory and Application</i> . Lippincott Williams & Wilkins, 2011.
1355 140. Kreider RB, Ferreira M, Wilson M, Almada AL. Effects of calcium β -
1356 hydroxy-β-methylbutyrate (HMB) supplementation during resistance-training
1357 on markers of catabolism, body composition and strength. Int J Sports Med 20

1358		503-9, 1999.
1350	141.	Kunkel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC,
1360	141.	Bullard SA, Adams CM. Ursolic Acid Increases Skeletal Muscle and Brown
1361		Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver
1361		Disease. <i>PLoS One</i> 7: e39332, 2012.
1362	142.	Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE,
1364	172.	Alipour F, Shields RK, Adams CM. mRNA expression signatures of human
1365		skeletal muscle atrophy identify a natural compound that increases muscle
1365		mass. <i>Cell Metab</i> 13: 627–638, 2011.
1367	143.	Labonté M, Dionne IJ, Bouchard DR, Sénéchal M, Tessier D, Khalil A,
1367	145.	Bobeuf F . Effects of antioxidant supplements combined with resistance
1369		exercise on gains in fat-free mass in healthy elderly subjects: a pilot study. J
1370		Am Geriatr Soc 56: 1766–8, 2008.
1370	144.	Lamboley CRH, Royer D, Dionne IJ. Effects of beta-hydroxy-beta-
1372	177.	methylbutyrate on aerobic-performance components and body composition in
1373		college students. Int J Sport Nutr Exerc Metab 17: 56–69, 2007.
1374	145.	Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP,
1375	1 10.	Blackwell JR, Gilchrist M, Benjamin N, Jones AM. Acute dietary nitrate
1376		supplementation improves cycling time trial performance. <i>Med Sci Sports</i>
1377		<i>Exerc</i> 43: 1125–1131, 2011.
1378	146.	Lanza IR, Blachnio-Zabielska A, Johnson ML, Schimke JM, Jakaitis DR,
1379		Lebrasseur NK, Jensen MD, Sreekumaran Nair K, Zabielski P. Influence
1380		of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites
1381		during high-fat diet. Am J Physiol Endocrinol Metab 304: E1391-403, 2013.
1382	147.	Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO,
1383		Weitzberg E. Dietary inorganic nitrate improves mitochondrial efficiency in
1384		humans. Cell Metab 13: 149–159, 2011.
1385	148.	Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate
1386		on oxygen cost during exercise. Acta Physiol 191: 59-66, 2007.
1387	149.	Lemon PW, Tarnopolsky MA, MacDougall JD, Atkinson SA. Protein
1388		requirements and muscle mass/strength changes during intensive training in
1389		novice bodybuilders. J Appl Physiol 73: 767–75, 1992.
1390	150.	Li Y-P, Chen Y, Li AS, Reid MB. Hydrogen peroxide stimulates ubiquitin-
1391		conjugating activity and expression of genes for specific E2 and E3 proteins in
1392		skeletal muscle myotubes. Am J Physiol Cell Physiol 285: C806–C812, 2003.
1393	151.	Logan SL, Spriet LL. Omega-3 Fatty Acid Supplementation for 12 Weeks
1394		Increases Resting and Exercise Metabolic Rate in Healthy Community-
1395		Dwelling Older Females. PLoS One 10: e0144828, 2015.
1396	152.	Louis M, Poortmans JR, Francaux M, Berré J, Boisseau N, Brassine E,
1397		Cuthbertson DJR, Smith K, Babraj JA, Waddell T, Rennie MJ. No effect
1398		of creatine supplementation on human myofibrillar and sarcoplasmic protein
1399		synthesis after resistance exercise. <i>Am J Physiol Endocrinol Metab</i> 285:
1400	1.50	E1089–E1094, 2003.
1401	153.	Louis M, Poortmans JR, Francaux M, Hultman E, Berre J, Boisseau N,
1402		Young VR, Smith K, Meier-Augenstein W, Babraj JA, Waddell T, Rennie
1403		MJ . Creatine supplementation has no effect on human muscle protein turnover
1404 1405		at rest in the postabsorptive or fed states. <i>Am J Physiol Endocrinol Metab</i> 284:
1405	151	E764–E770, 2003. Luiking V. Ton Have C. Welfe P. Deutz N. Argining de nove and Nitrie
1406 1407	154.	Luiking Y, Ten Have G, Wolfe R, Deutz N. Arginine de novo and Nitric oxide production in disease states. <i>Am J Physiol Endocrinol Metab</i> 303:
1407		UNICE PRODUCTION IN DISCASE STATES. AIR 5.1 RYSTOL ERROCTINOL METRO 505.

1400		E1177 E1100 2012
1408 1409	155	E1177–E1189, 2012. Makanaa V. Kawada S. Sasaki K. Nakazata K. Ishii N. Vitamin C.
	155.	Makanae Y, Kawada S, Sasaki K, Nakazato K, Ishii N. Vitamin C
1410		administration attenuates overload-induced skeletal muscle hypertrophy in rats.
1411	150	Acta Physiol 208: 57–65, 2013.
1412	156.	Mandel H, Levy N, Izkovitch S, Korman SH. Elevated plasma citrulline and
1413		arginine due to consumption of Citrullus vulgaris (watermelon). <i>J Inherit</i>
1414	167	Metab Dis 28: 467–472, 2005.
1415	157.	Marzani B, Balage M, Vénien A, Astruc T, Papet I, Dardevet D, Mosoni L.
1416		Antioxidant supplementation restores defective leucine stimulation of protein
1417	1.50	synthesis in skeletal muscle from old rats. <i>J Nutr</i> 138: 2205–2211, 2008.
1418	158.	McCarthy JJ, Esser K. Counterpoint: Satellite cell addition is not obligatory
1419	150	for skeletal muscle hypertrophy. <i>J Appl Physiol</i> 103: 1100–1102, 2007.
1420	159.	McConell GK, Bradley SJ, Stephens TJ, Canny BJ, Kingwell BA, Lee-
1421		Young RS. Skeletal muscle nNOSu protein content is increased by exercise
1422		training in humans. Am J Physiol Regul Integr Comp Physiol 293: R821–R828,
1423	1(0	
1424	160.	McGlory C, Galloway SDR, Hamilton DL, McClintock C, Breen L, Dick
1425		JR, Bell JG, Tipton KD. Temporal changes in human skeletal muscle and
1426		blood lipid composition with fish oil supplementation. <i>Prostaglandins Leukot</i>
1427	171	<i>Essent Fatty Acids</i> 90: 199–206, 2014.
1428	161.	McGlory C, Wardle SL, Macnaughton LS, Witard OC, Scott F, Dick J, Dell LC, Dhilling SM, Collegnan SDD, Hamilton DL, Tinton KD, Fish ail
1429		Bell JG, Phillips SM, Galloway SDR, Hamilton DL, Tipton KD. Fish oil
1430		supplementation suppresses resistance exercise and feeding-induced increases
1431		in anabolic signaling without affecting myofibrillar protein synthesis in young
1432	1(0	men. <i>Physiol Rep</i> 4: e12715, 2016.
1433	162.	McLellan TM, Pasiakos SM, Lieberman HR. Effects of Protein in
1434		Combination with Carbohydrate Supplements on Acute or Repeat Endurance
1435	1(2	Exercise Performance: A Systematic Review. <i>Sport Med</i> 44: 535–550, 2014.
1436	163.	Miramonti AA, Stout JR, Fukuda DH, Robinson EH, Wang R, La Monica
1437		MB , Hoffman JR . The effects of four weeks of high intensity interval training
1438		and β -hydroxy- β -methylbutyric free acid supplementation on the onset of
1439	164	neuromuscular fatigue. J Strength Cond Res 30: 626–34, 2016.
1440	164.	Mitchell WK, Phillips BE, Wilkinson DJ, Williams JP, Rankin D, Lund J,
1441		Smith K, Atherton PJ. Supplementing essential amino acids with the nitric
1442		oxide precursor, L-arginine, enhances skeletal muscle perfusion without
1443	165	impacting anabolism in older men. <i>Clin Nutr</i> S0261-561: 31271–7, 2016.
1444 1445	165.	Mobley CB, Hornberger TA, Fox CD, Healy JC, Ferguson BS, Lowery
1445		RP, McNally RM, Lockwood CM, Stout JR, Kavazis AN, Wilson JM,
1446		Roberts MD . Effects of oral phosphatidic acid feeding with or without whey
1447		protein on muscle protein synthesis and anabolic signaling in rodent skeletal
1448	1//	muscle. J Int Soc Sports Nutr 12: 32, 2015.
1449	166.	Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton
1450		KD , Phillips SM . Protein Ingestion to Stimulate Myofibrillar Protein Synthesis
1451		Requires Greater Relative Protein Intakes in Healthy Older Versus Younger
1452	177	Men. Journals Gerontol Ser A Biol Sci Med Sci 70: 57–62, 2015.
1453	167.	Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Driver T. Terrer enclose: MA, Philling SM, Insected anatoin dese normanae of
1454		Prior T, Tarnopolsky MA, Phillips SM . Ingested protein dose response of
1455		muscle and albumin protein synthesis after resistance exercise in young men.
1456	160	Am J Clin Nutr 89: 161–168, 2009.
1457	168.	Moylan JS, Reid MB. Oxidative stress, chronic disease, and muscle wasting.

 Muggeridge DJ, Howe CCF, Spendiff O, Pedlar C, James PE, Easton C. A Single Dose of Beetroot Juice Enhances Cycling Performance in Simulated Altitude. <i>Med Sci Sport Exerc</i> 46: 143–150, 2014. Mujika I, Chatard JC, Lacoste L, Barale F, Geyssant A. Creatine supplementation does not improve sprint performance in competitive swimmers. <i>Med Sci Sport Exerc</i> 28: 1435–41, 1996. Naderi A, Oliveira EP de, Ziegenfuss TN, Willems MET. Timing, optimal dose and intake duration of dietary supplements with evidence-based uses in sports nutrition. <i>J Exerc Nutr Biochem</i> 44: 1–42, 2016. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin secretion and diabetes. <i>Biochem Soc Trans</i> 35: 1180–6, 2007. Newsholme P, Krause M. Nutritional regulation of insulin secretion: implications for diabetes. <i>Clin Biochem Rev</i> 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta- methylbutyrate on muscle metabolism during resistance-exercise training. <i>J Appl Physiol</i> 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. Osen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellate usel and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. Oux Liu M, Luo H, Dong LQ, Liu F, Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. Panton LB, Rathmacher JA, Baier S, N	1458		Muscle Nerve 35: 411–429, 2007.
 Altítude. Med Sci Sport Exerc 46: 143–150, 2014. Mujika I, Chatard JC, Lacoste L, Barale F, Geyssant A. Creatine supplementation does not improve sprint performance in competitive swimmers. Med Sci Sports Exerc 28: 1435–41, 1996. Naderi A, Oliveira EP de, Ziegenfuss TN, Willems MET. Timing, optimal dose and intake duration of dietary supplements with evidence-based uses in sports nutrition. J Exerc Nutr Biochem 44: 1–42, 2016. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin scerction and diabetes. Biochem Soc Trans 35: 1180–6, 2007. Newsholme P, Krause M. Nutritional regulation of insulin scerction: implications for diabetes. Clin Biochem Rev 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 8: 300–311, 1997. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mamalian target of rapamycin following eccentric contractions. J Physiol 587: 3691–3701, 2009. Ogasawara R, Sato K, Higashida K, Nakazto K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kijaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol Endocrinol Metab 305: E760-5, 2013. Ous X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. PLoS One	1459	169.	Muggeridge DJ, Howe CCF, Spendiff O, Pedlar C, James PE, Easton C. A
 Mujika I, Chatard JC, Lacoste L, Barale F, Geyssant A. Creatine supplementation does not improve sprint performance in competitive swimmers. <i>Med Sci Sports Exerc</i> 28: 1435–41, 1996. Naderi A, Oliveira EP de, Ziegenfuss TN, Willems MET. Timing, optimal dose and intake duration of dietary supplements with evidence-based uses in sports nutrition. <i>J Exerc Nut Biochem</i> 44: 1–42, 2016. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin sceretion and diabetes. <i>Biochem Soc Trans</i> 35: 1180–6, 2007. Newsholme P, Krause M. Nutritional regulation of insulin sceretion: implications for diabetes. <i>Clin Biochem Rev</i> 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolitie beta-hydroxy-beta- methylbutyrate on muscle metabolism during resistance-exercise training. <i>J Appl Physiol</i> 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. Oux L Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. Panton LB, Rathmacher JA,	1460		Single Dose of Beetroot Juice Enhances Cycling Performance in Simulated
 supplementation does not improve sprint performance in competitive swimmers. Med Sci Sports Exerc 28: 1435–41, 1996. Naderi A, Oliveira EP de, Ziegenfuss TN, Willems MET. Timing, optimal dose and intake duration of dietary supplements with evidence-based uses in sports nutrition. J Exerc Nutr Biochem 44: 1–42, 2016. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin scerction and diabetes. Biochem Rev 33: 55–47, 2012. Newsholme P, Krause M. Nutritional regulation of insulin scerction: implications for diabetes. Clin Biochem Rev 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 8: 300–311, 1997. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatincia cid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587: 3691–3701, 2009. Ogasawara R, Sato K, Higgahida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kijaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 737: 525–534, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F, Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. PLoS One 9: e95393, 2014. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite file phydroxy-f-methylbutyrate (HMB) during resistance training	1461		Altitude. Med Sci Sport Exerc 46: 143–150, 2014.
 swimmers. Med Sci Sports Exerc 28: 1435–41, 1996. Naderi A, Oliveira EP de, Ziegenfuss TN, Willems MET. Timing, optimal dose and intake duration of dietary supplements with evidence-based uses in sports nutrition. J Exerc Nutr Biochem 44: 1–42, 2016. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin scerction and diabetes. Biochem Soc Trans 35: 1180–6, 2007. Newsholme P, Krause M. Nutritional regulation of insulin scerction: implications for diabetes. Clin Biochem Rev 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta- methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional regulation of insuble β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 8: 300–311, 1997. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587: 3691–3701, 2009. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myrouclei number in human skeletal muscle induced by strength training. J Physiol 573: 525–534, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. PLoS One 9: e95393, 2014. Panto LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. Nutrition 16: 734–739, 2000	1462	170.	Mujika I, Chatard JC, Lacoste L, Barale F, Geyssant A. Creatine
 swimmers. Med Sci Sports Exerc 28: 1435–41, 1996. Naderi A, Oliveira EP de, Ziegenfus TN, Willems MET. Timing, optimal dose and intake duration of dietary supplements with evidence-based uses in sports nutrition. J Exerc Nutr Biochem 44: 1–42, 2016. Newsholme P, Bender K, Kiely A, Brennan L, Amino acid metabolism, insulin sceretion and diabetes. Biochem Soc Trans 35: 1180–6, 2007. Newsholme P, Krause M. Nutritional regulation of insulin sceretion: implications for diabetes. Clin Biochem Rev 33: 35–47, 2012. Newsholme P, Krause M. Nutritional regulation of insulin sceretion: implications for diabetes. Clin Biochem Rev 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 8: 300–311, 1997. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587: 3691–3701, 2009. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573: 525–534, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. PLoS One 9: e95393, 2014. Pantoi LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucin	1463		
 Naderi A, Oliveira È P de, Ziegenfuss TN, Willems MET. Timing, optimal dose and intake duration of dictary supplements with evidence-based uses in sports nutrition. <i>J Exerc Nutr Biochem</i> 44: 1–42, 2016. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin secretion and diabetes. <i>Biochem Soc Trans</i> 35: 1180–6, 2007. Newsholme P, Krause M. Nutritional regulation of insulin secretion: implications for diabetes. <i>Clin Biochem Rev</i> 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta- methylbutyrate on muscle metabolism during resistance-exercise training. <i>J Appl Physiol</i> 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. Pantel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085	1464		
 sports nutrition. <i>J Exerc Nutr Biochem</i> 44: 1–42, 2016. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin secretion and diabetes. <i>Biochem Soc Trans</i> 35: 1180–6, 2007. Newsholme P, Krause M. Nutritional regulation of insulin secretion: implications for diabetes. <i>Clin Biochem Rev</i> 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. <i>J Appl Physiol</i> 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. Rowswara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine-Stimulates mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076–305, 2013. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1465	171.	•
 sports nutrition. <i>J Exerc Nutr Biochem</i> 44: 1–42, 2016. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin secretion and diabetes. <i>Biochem Soc Trans</i> 35: 1180–6, 2007. Newsholme P, Krause M. Nutritional regulation of insulin secretion: implications for diabetes. <i>Clin Biochem Rev</i> 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. <i>J Appl Physiol</i> 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. Rowswara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine-Stimulates mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076–305, 2013. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1466		dose and intake duration of dietary supplements with evidence-based uses in
 insulin secretion and diabetes. <i>Biochem Soc Trans</i> 35: 1180–6, 2007. insulin secretion and diabetes. <i>Biochem Soc Trans</i> 35: 1180–6, 2007. 173. Newsholme P, Krause M, Nutritional regulation of insulin secretion: implications for diabetes. <i>Clin Biochem Rev</i> 33: 35–47, 2012. 174. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta- methylbutyrate on muscle metabolism during resistance-exercise training. <i>J</i> <i>Appl Physiol</i> 81: 2095–2104, 1996. 175. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. 176. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–7	1467		5 11
 insulin secretion and diabetes. <i>Biochem Soc Trans</i> 35: 1180–6, 2007. insulin secretion and diabetes. <i>Biochem Soc Trans</i> 35: 1180–6, 2007. 173. Newsholme P, Krause M, Nutritional regulation of insulin secretion: implications for diabetes. <i>Clin Biochem Rev</i> 33: 35–47, 2012. 174. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta- methylbutyrate on muscle metabolism during resistance-exercise training. <i>J</i> <i>Appl Physiol</i> 81: 2095–2104, 1996. 175. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. 176. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–7	1468	172.	1
 Newsholme P, Krause M. Nutritional regulation of insulin secretion: implications for diabetes. <i>Clin Biochem Rev</i> 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Piller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta- methylbutyrate on muscle metabolism during resistance-exercise training. <i>J Appl Physiol</i> 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. Patlel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of mult			
 implications for diabetes. <i>Clin Biochem Rev</i> 33: 35–47, 2012. implications for diabetes. <i>Clin Biochem Rev</i> 33: 35–47, 2012. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. <i>J Appl Physiol</i> 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. Patiel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076–3085, 2002. Paulsen G, Cumming KT, Holden G, Hallén J, Rømnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midtuu M, Freuchen 		173.	,
 1472 174. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta- methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 81: 2095–2104, 1996. 175. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 8: 300–311, 1997. 176. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587: 3691–3701, 2009. 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. Am J Physiol Endocrinol Metab 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. PLoS One 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. Nutrition 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur J Biochem 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Svee			
 AS, Abumrad N. Effect of leucine metabolite beta-hydroxy-beta- methylbutyrate on muscle metabolism during resistance-exercise training. <i>J</i> <i>Appl Physiol</i> 81: 2095–2104, 1996. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F, Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 		174.	•
 1474 methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 81: 2095–2104, 1996. 1475 Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 8: 300–311, 1997. 176 O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587: 3691–3701, 2009. 177 Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. Am J Physiol Endocrinol Metab 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. PLoS One 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. Nutrition 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur J Biochem 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			
 <i>Appl Physiol</i> 81: 2095–2104, 1996. 1476 175. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. 176. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			
 1476 175. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. 176. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			
 β-methylbutyrate (HMB). <i>J Nutr Biochem</i> 8: 300–311, 1997. 176. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 		175.	
 1478 176. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. 1481 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLcod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076–3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midtum M, Freuchen 			
 phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 		176.	
 mammalian target of rapamycin following eccentric contractions. <i>J Physiol</i> 587: 3691–3701, 2009. 1482 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076–3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			
 1481 587: 3691–3701, 2009. 1482 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 1485 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J Physiol</i> 573: 525–534, 2006. 1489 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 1492 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076–3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			
 1482 177. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. <i>J</i> <i>Physiol</i> 573: 525–534, 2006. 178. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			
1483stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle.1484Am J Physiol Endocrinol Metab 305: E760-5, 2013.1485178.Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C,1486Kjaer M. Creatine supplementation augments the increase in satellite cell and1487myonuclei number in human skeletal muscle induced by strength training. J1488Physiol 573: 525–534, 2006.1489179.1489179.0sowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L,1490Moinard C. Citrulline modulates muscle protein metabolism in old1491malnourished rats. Am J Physiol Endocrinol Metab 291: E582–E586, 2006.1492180.1493Stimulated mTORC1 Signaling by Suppressing mTOR Localization to1494Lysosome. PLoS One 9: e95393, 2014.1495181.181.Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation1496of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance1497training. Nutrition 16: 734–739, 2000.1498182.182.Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular1499stresses profoundly inhibit protein synthesis and modulate the states of1500phosphorylation of multiple translation factors. Eur J Biochem 269: 3076–1501183.Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O,1503Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen		177.	
 <i>Am J Physiol Endocrinol Metab</i> 305: E760-5, 2013. 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J <i>Physiol</i> 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			
 1485 178. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573: 525–534, 2006. 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. Am J Physiol Endocrinol Metab 291: E582–E586, 2006. 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. PLoS One 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. Nutrition 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur J Biochem 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			
 Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573: 525–534, 2006. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. Am J Physiol Endocrinol Metab 291: E582–E586, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. PLoS One 9: e95393, 2014. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. Nutrition 16: 734–739, 2000. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur J Biochem 269: 3076– 3085, 2002. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 		178.	
 myonuclei number in human skeletal muscle induced by strength training. J Physiol 573: 525–534, 2006. 1489 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. Am J Physiol Endocrinol Metab 291: E582–E586, 2006. 1492 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. PLoS One 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. Nutrition 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur J Biochem 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			
 <i>Physiol</i> 573: 525–534, 2006. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1487		• • •
 1489 179. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metabolism in old malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 1492 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1488		
 malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 1492 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 		179.	
 malnourished rats. <i>Am J Physiol Endocrinol Metab</i> 291: E582–E586, 2006. 1492 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1490		Moinard C. Citrulline modulates muscle protein metabolism in old
 1492 180. Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic Acid Inhibits Leucine- Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 1495 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 1498 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			1
 Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 		180.	
 Lysosome. <i>PLoS One</i> 9: e95393, 2014. 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1493		
 1495 181. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1494		
 of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. <i>Nutrition</i> 16: 734–739, 2000. 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076–3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1495	181.	Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation
 training. <i>Nutrition</i> 16: 734–739, 2000. 1498 182. Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1496		of the leucine metabolite β -hydroxy- β -methylbutyrate (HMB) during resistance
 stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1497		
 stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 		182.	e
 phosphorylation of multiple translation factors. <i>Eur J Biochem</i> 269: 3076– 3085, 2002. 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1499		• • • •
 1501 3085, 2002. 1502 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, 1503 Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 	1500		
 183. Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, 1503 Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen 			
1503 Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen		183.	
F , Wiig H, Ulseth ET, Garthe I, Blomhoff R, Benestad HB, Raastad T.	1504		F, Wiig H, Ulseth ET, Garthe I, Blomhoff R, Benestad HB, Raastad T.
1505 Vitamin C and E supplementation hampers cellular adaptation to endurance			
training in humans: a double-blind, randomised, controlled trial. <i>J Physiol</i> 592:			
	1507		1887–901, 2014.

1508	184.	Paulsen G, Hamarsland H, Cumming KT, Johansen RE, Hulmi JJ,
1509	101.	Børsheim E, Wiig H, Garthe I, Raastad T. Vitamin C and E supplementation
1510		alters protein signalling after a strength training session, but not muscle growth
1511		during 10 weeks of training. J Physiol 592: 5391–5408, 2014.
1512	185.	Petersen AC, McKenna MJ, Medved I, Murphy KT, Brown MJ, Della
1512	100.	Gatta P, Cameron-Smith D. Infusion with the antioxidant N-acetylcysteine
1514		attenuates early adaptive responses to exercise in human skeletal muscle. Acta
1515		<i>Physiol</i> 204: 382–392, 2012.
1516	186.	Petroczi A, Naughton DP, Pearce G, Bailey R, Bloodworth A, McNamee
1517	100.	M. Nutritional supplement use by elite young UK athletes: fallacies of advice
1518		regarding efficacy. J Int Soc Sports Nutr 5: 1–8, 2008.
1519	187.	Phillips BE, Atherton PJ, Varadhan K, Limb MC, Wilkinson DJ, Sjøberg
1520		KA, Smith K, Williams JP. The effects of resistance exercise training upon
1521		macro and micro-circulatory responses to feeding and skeletal muscle protein
1522		anabolism, in older men. J Physiol 593: 2721–2734, 2015.
1523	188.	Phillips BE, Atherton PJ, Varadhan K, Limb MC, Williams JP, Smith K.
1524		Acute cocoa flavanol supplementation improves muscle macro- and
1525		microvascular but not anabolic responses to amino acids in older men. Appl
1526		<i>Physiol Nutr Metab</i> 41: 548–556, 2016.
1527	189.	Phillips BE, Atherton PJ, Varadhan K, Wilkinson DJ, Limb M, Selby AL,
1528		Rennie MJ, Smith K, Williams JP. Pharmacological enhancement of leg and
1529		muscle microvascular blood flow does not augment anabolic responses in
1530		skeletal muscle of young men under fed conditions. Am J Physiol Endocrinol
1531		<i>Metab</i> 306: E168-76, 2014.
1532	190.	Phillips S, Tipton K, Aarsland A, Wolf SE, Wolfe R. Mixed muscle protein
1533		synthesis and breakdown after resistance exercise in humans. Am J Physiol
1534		273: E99-107, 1997.
1535	191.	Phillips SM, McGlory C. CrossTalk proposal: The dominant mechanism
1536		causing disuse muscle atrophy is decreased protein synthesis. J Physiol 592:
1537		5341–5343, 2014.
1538	192.	Pike JW. Expression of the vitamin d receptor in skeletal muscle: are we there
1539	100	yet? <i>Endocrinology</i> 155: 3214–8, 2014.
1540	193.	Le Plenier S, Walrand S, Noirt R, Cynober L, Moinard C. Of leucine and
1541		citrulline versus non-essential amino acids on muscle protein synthesis in
1542	104	fasted rat: A common activation pathway? <i>Amino Acids</i> 43: 1171–1178, 2012.
1543	194.	Pojednic RM, Ceglia L. The Emerging Biomolecular Role of Vitamin D in
1544	105	Skeletal Muscle. <i>Exerc Sport Sci Rev</i> 42: 76–81, 2014.
1545	195.	Poveda JJ, Riestra A, Salas E, Cagigas ML, López-Somoza C, Amado JA,
1546		Berrazueta JR . Contribution of nitric oxide to exercise-induced changes in
1547		healthy volunteers: effects of acute exercise and long-term physical training.
1548	106	Eur J Clin Invest 27: 967–971, 1997.
1549 1550	196.	Powers SK , Jackson MJ. Exercise-induced oxidative stress: cellular
$1550 \\ 1551$		mechanisms and impact on muscle force production. <i>Physiol Rev</i> 88: 1243–76, 2008.
1551	197.	Purpura M , Jäger R, Joy JM, Lowery RP, Moore JD, Wilson JM. Effect of
1552	17/.	oral administration of soy-derived phosphatidic acid on concentrations of
1555		phosphatidic acid and lyso-phosphatidic acid molecular species in human
1554		plasma. J Int Soc Sports Nutr 10: P22, 2013.
1555	198.	Rankin JW, Goldman LP, Puglisi MJ, Nickols-Richardson SM, Earthman
1550	170.	CP , Gwazdauskas FC . Effect of post-exercise supplement consumption on
2007		,

1558		adaptations to resistance training. J Am Coll Nutr 23: 322-30, 2004.
1559	199.	Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral
1560	199.	essential amino acid-carbohydrate supplement enhances muscle protein
1561		anabolism after resistance exercise. J Appl Physiol 88: 386–392, 2000.
1562	200.	Rennie MJ, Edwards RH, Halliday D, Matthews DE, Wolman SL,
1562	200.	Millward DJ. Muscle protein synthesis measured by stable isotope techniques
1564		in man: the effects of feeding and fasting. <i>Clin Sci (Lond)</i> 63: 519–23, 1982.
1565	201.	Robinson MM, Turner SM, Hellerstein MK, Hamilton KL, Miller BF.
1566	201.	Long-term synthesis rates of skeletal muscle DNA and protein are higher
1567		during aerobic training in older humans than in sedentary young subjects but
1568		are not altered by protein supplementation. <i>FASEB J</i> 25: 3240–9, 2011.
1569	202.	Rodacki LF, Pereira G, Naliwaiko K, Coelho I, Pequito D. Fish-oil
1570	202.	supplementation enhances the effects of strength training in elderly women. J
1571		<i>Clin Nutr</i> : 428–436, 2012.
1572	203.	Ryan AM, Reynolds J V, Healy L, Byrne M, Moore J, Brannelly N,
1573	200.	McHugh A, McCormack D, Flood P. Enteral nutrition enriched with
1574		eicosapentaenoic acid (EPA) preserves lean body mass following esophageal
1575		cancer surgery: results of a double-blinded randomized controlled trial. Ann
1576		Surg 249: 355–363, 2009.
1577	204.	Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA. Global and
1578		targeted gene expression and protein content in skeletal muscle of young men
1579		following short-term creatine monohydrate supplementation. <i>Physiol Genomics</i>
1580		32: 219–228, 2008.
1581	205.	Sahlin K, Ren JM. Relationship of contraction capacity to metabolic changes
1582		during recovery from a fatiguing contraction. J Appl Physiol 67: 648–654,
1583		1989.
1505		1909.
1584	206.	Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking
	206.	
1584	206.	Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking
1584 1585	206.	Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3
1584 1585 1586	206.	Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate
1584 1585 1586 1587 1588 1588	206. 207.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM.
1584 1585 1586 1587 1588		Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013.
1584 1585 1586 1587 1588 1588		 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010.
1584 1585 1586 1587 1588 1589 1590 1591 1592		 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593	207.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594	207. 208.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005.
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595	207.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596	207. 208.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597	207. 208.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. <i>J Am Geriatr Soc</i> 58: 2129–
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598	207. 208. 209.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. <i>J Am Geriatr Soc</i> 58: 2129–2134, 2010.
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599	207. 208.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. <i>J Am Geriatr Soc</i> 58: 2129–2134, 2010. Shad B, Smeuninx B, Atherton PJ, Breen L. The mechanistic and ergogenic
1584 1585 1586 1587 1588 1590 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600	207. 208. 209.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. <i>J Am Geriatr Soc</i> 58: 2129–2134, 2010. Shad B, Smeuninx B, Atherton PJ, Breen L. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle. <i>Appl Physiol Nutr Metab</i> 40:
$1584 \\ 1585 \\ 1586 \\ 1587 \\ 1588 \\ 1589 \\ 1590 \\ 1591 \\ 1592 \\ 1593 \\ 1594 \\ 1595 \\ 1596 \\ 1597 \\ 1598 \\ 1599 \\ 1600 \\ 1601 \\ 1601 \\ 1601 \\ 100 \\ 1601 \\ 100 \\ 1$	207.208.209.210.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. <i>J Am Geriatr Soc</i> 58: 2129–2134, 2010. Shad B, Smeuninx B, Atherton PJ, Breen L. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle. <i>Appl Physiol Nutr Metab</i> 40: 1233–1241, 2015.
1584 1585 1586 1587 1588 1590 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602	207. 208. 209.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. <i>J Am Geriatr Soc</i> 58: 2129–2134, 2010. Shad B, Smeuninx B, Atherton PJ, Breen L. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle. <i>Appl Physiol Nutr Metab</i> 40: 1233–1241, 2015. Shannon CE, Nixon A V, Greenhaff PL, Stephens FB. Protein ingestion
1584 1585 1586 1587 1588 1590 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603	207.208.209.210.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. <i>J Am Geriatr Soc</i> 58: 2129–2134, 2010. Shad B, Smeuninx B, Atherton PJ, Breen L. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle. <i>Appl Physiol Nutr Metab</i> 40: 1233–1241, 2015. Shannon CE, Nixon A V, Greenhaff PL, Stephens FB. Protein ingestion acutely inhibits insulin-stimulated muscle carnitine uptake in healthy young
1584 1585 1586 1587 1588 1590 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604	 207. 208. 209. 210. 211. 	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. <i>J Am Geriatr Soc</i> 58: 2129–2134, 2010. Shad B, Smeuninx B, Atherton PJ, Breen L. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle. <i>Appl Physiol Nutr Metab</i> 40: 1233–1241, 2015. Shannon CE, Nixon A V, Greenhaff PL, Stephens FB. Protein ingestion acutely inhibits insulin-stimulated muscle carnitine uptake in healthy young men. <i>Am J Clin Nutr</i> 103: 276–282, 2016.
1584 1585 1586 1587 1588 1590 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605	207.208.209.210.	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. <i>J Am Geriatr Soc</i> 58: 2129–2134, 2010. Shad B, Smeuninx B, Atherton PJ, Breen L. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle. <i>Appl Physiol Nutr Metab</i> 40: 1233–1241, 2015. Shannon CE, Nixon A V, Greenhaff PL, Stephens FB. Protein ingestion acutely inhibits insulin-stimulated muscle carnitine uptake in healthy young men. <i>Am J Clin Nutr</i> 103: 276–282, 2016. Shenkin A. Micronutrients in health and disease. <i>East Afr Med J</i> 78: 449–450,
1584 1585 1586 1587 1588 1590 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604	 207. 208. 209. 210. 211. 	 Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 1,25(OH)2 -vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. <i>Mol Nutr Food Res</i> 25: 1–10, 2013. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. <i>Cell</i> 141: 290–303, 2010. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. <i>Cerebrovasc Dis</i> 20: 187–192, 2005. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. <i>J Am Geriatr Soc</i> 58: 2129–2134, 2010. Shad B, Smeuninx B, Atherton PJ, Breen L. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle. <i>Appl Physiol Nutr Metab</i> 40: 1233–1241, 2015. Shannon CE, Nixon A V, Greenhaff PL, Stephens FB. Protein ingestion acutely inhibits insulin-stimulated muscle carnitine uptake in healthy young men. <i>Am J Clin Nutr</i> 103: 276–282, 2016.

1608	214.	Slater G, Jenkins D, Logan P, Lee H, Vukovich M, Rathmacher JA, Hahn
1609	217,	AG. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation does not
1610		affect changes in strength or body composition during resistance training in
1611		trained men. Int. J. Sport Nutr. Exerc. Metab. 11: 384–396, 2001.
1612	215.	Smith G, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ,
1613		Mittendorfer B. Dietary omega-3 fatty acid supplementation increases the rate
1614		of muscle protein synthesis in older adults: a randomized controlled trial. Am J
1615		<i>Clin Nutr</i> 93: 402–412, 2011.
1616	216.	Smith GI, Atherton PJ, Reeds DN, Mohammed BS, Rankin D, Rennie MJ,
1617		Mittendorfer B. Omega-3 polyunsaturated fatty acids augment the muscle
1618		protein anabolic response to hyperaminoacidemiahyperinsulinemia in healthy
1619		young and middle aged men and women. Clin Scinence 121: 267-278, 2011.
1620	217.	Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B.
1621		Fish oil-derived n-3 PUFA therapy increases muscle mass and function in
1622		healthy older adults. Am J Clin Nutr 102: 115–22, 2015.
1623	218.	Smith K, Reynolds N, Downie S, Patel A, Rennie MJ. Effects of flooding
1624		amino acids on incorporation of labeled amino acids into human muscle
1625	• 1 0	protein. Am J Physiol 275: E73–E78, 1998.
1626	219.	Snow RJ, McKenna MJ, Selig SE, Kemp J, Stathis CG, Zhao S. Effect of
1627		creatine supplementation on sprint exercise performance and muscle
1628	220	metabolism. J Appl Physiol 84: 1667–1673, 1998.
1629	220.	Soop M, Björkman O, Cederblad G, Hagenfeldt L, Wahren J. Influence of
1630		carnitine supplementation on muscle substrate and carnitine metabolism during
1631 1632	221	exercise. J Appl Physiol 64: 2394–9, 1988. Sørensen OH, Lund B, Saltin B, Andersen RB, Hjorth L, Melsen F,
1632	221.	Mosekilde L. Myopathy in bone loss of ageing: improvement by treatment
1633 1634		with 1 alpha-hydroxycholecalciferol and calcium. <i>Clin Sci (Lond)</i> 56: 157–61,
1635		1979.
1636	222.	Stellingwerff T, Decombaz J, Harris RC, Boesch C. Optimizing human in
1637		vivo dosing and delivery of b-alanine supplements for muscle carnosine
1638		synthesis. Amino Acids 43: 57–65, 2012.
1639	223.	Stephens FB, Constantin-Teodosiu D, Greenhaff PL. New insights
1640		concerning the role of carnitine in the regulation of fuel metabolism in skeletal
1641		muscle. J Physiol 581: 431–44, 2007.
1642	224.	Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ,
1643		Greenhaff PL. An acute increase in skeletal muscle carnitine content alters
1644		fuel metabolism in resting human skeletal muscle. J Clin Endocrinol Metab 91:
1645		5013–5018, 2006.
1646	225.	Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ,
1647		Greenhaff PL. Insulin stimulates L-carnitine accumulation in human skeletal
1648	226	muscle. <i>FASEB J</i> 20: 377–9, 2006.
1649	226.	Stephens FB, Evans CE, Constantin-Teodosiu D, Greenhaff PL.
1650		Carbohydrate ingestion augments L-carnitine retention in humans. <i>J Appl</i>
1651	227	Physiol 102: 1065–1070, 2007.
1652	227.	Stephens FB, Wall BT, Marimuthu K, Shannon CE, Constantin-Teodosiu
1653 1654		D , Macdonald IA , Greenhaff PL . Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents
1654		body fat accumulation in humans. <i>J Physiol</i> 59118: 4655–4666, 2013.
1656	228.	Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris
1657	<i>22</i> 0.	RC , O'Kroy J . Effects of b-alanine supplementation on the onset of
2007		,,

1658		neuromuscular fatigue and ventilatory threshold in women. Amino Acids 32:
1659		381–386, 2007.
1660	229.	Suzuki Y, Ito O, Mukai N, Takahashi H, Takamatsu K. High level of
1661		skeletal muscle carnosine contributes to the latter half of exercise performance
1662		during 30-s maximal cycle ergometer sprinting. Jpn J Physiol 52: 199–205,
1663		2002.
1664	230.	Symons TB, Sheffield-Moore M, Wolfe RR, Paddon-Jones D. A moderate
1665		serving of high-quality protein maximally stimulates skeletal muscle protein
1666		synthesis in young and elderly subjects. J Am Diet Assoc 109: 1582-6, 2009.
1667	231.	Tanaka T, Kassai A, Ohmoto M, Morito K, Kashiwada Y, Takaishi Y,
1668		Urikura M, Morishige J, Satouchi K, Tokumura A. Quantification of
1669		Phosphatidic Acid in Foodstuffs Using a Thin-Layer-Chromatography-Imaging
1670		Technique. J Agric Food Chem 60: 4156–4161, 2012.
1671	232.	Tang JE, Lysecki PJ, Manolakos JJ, MacDonald MJ, Tarnopolsky MA,
1672		Phillips SM. Bolus arginine supplementation affects neither muscle blood flow
1673		nor muscle protein synthesis in young men at rest or after resistance exercise. J
1674		Nutr 141: 195–200, 2011.
1675	233.	Taylor PM. Absorbing competition for carnitine. J Physiol 532: 283, 2001.
1676	234.	Thompson CH, Kemp GJ, Sanderson AL, Dixon RM, Styles P, Taylor DJ,
1677		Radda GK. Effect of creatine on aerobic and anaerobic metabolism in skeletal
1678		muscle in swimmers. Br J Sport Med 30: 222-225, 1996.
1679	235.	Thwaites DT, Anderson CMH. H+-coupled nutrient, micronutrient and drug
1680		transporters in the mammalian small intestine. Exp Physiol 92: 603–19, 2007.
1681	236.	Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR.
1682		Stimulation of net muscle protein synthesis by whey protein ingestion before
1683		and after exercise. Am J Physiol Endocrinol Metab 292: E71–E76, 2007.
1684	237.	Tomi M, Tajima A, Tachikawa M, Hosoya K ichi. Function of taurine
1685		transporter (Slc6a6/TauT) as a GABA transporting protein and its relevance to
1686		GABA transport in rat retinal capillary endothelial cells. Biochim Biophys Acta
1687		<i>- Biomembr</i> 1778: 2138–2142, 2008.
1688	238.	Trexler ET, Smith-Ryan AE, Stout JR, Hoffman JR, Wilborn CD, Sale C,
1689		Kreider RB, Jäger R, Earnest CP, Bannock L, Campbell B, Kalman D,
1690		Ziegenfuss TN, Antonio J. International society of sports nutrition position
1691		stand: Beta-Alanine. J Int Soc Sports Nutr 12: 30, 2015.
1692	239.	Vanhatalo A, Fulford J, Bailey SJ, Blackwell JR, Winyard PG, Jones AM.
1693		Dietary nitrate reduces muscle metabolic perturbation and improves exercise
1694		tolerance in hypoxia. J Physiol 589: 5517–28, 2011.
1695	240.	Vaughan RA, Gannon NP, Carriker CR. Nitrate-containing beetroot
1696		enhances myocyte metabolism and mitochondrial content. J Tradit
1697		<i>Complement Med</i> 6: 17–22, 2016.
1698	241.	Verdijk LB, Gleeson BG, Jonkers RAM, Meijer K, Savelberg HHCM,
1699		Dendale P, van Loon LJC. Skeletal muscle hypertrophy following resistance
1700		training is accompanied by a fiber type-specific increase in satellite cell content
1701		in elderly men. J Gerontol A Biol Sci Med Sci 64: 332-9, 2009.
1702	242.	Verdijk LB, Jonkers RAM, Gleeson BG, Beelen M, Meijer K, Savelberg
1703		HHCM, Wodzig KWHW, Dendale P, Van Loon LJC. Protein
1704		supplementation before and after exercise does not further augment skeletal
1705		muscle hypertrophy after resistance training in elderly men. <i>Am J Clin Nutr</i> 89:
1706	.	608–616, 2009.
1707	243.	Verreijen AM, de Wilde J, Engberink MF, Swinkels S, Verlaan S, Weijs

1707 243. Verreijen AM, de Wilde J, Engberink MF, Swinkels S, Verlaan S, Weijs

1700		DI A III-1 Willow Durthin I and in Frankshad Grandlan and Duran Marala
1708		PJ. A High Whey Protein, Leucine Enriched Supplement Preserves Muscle
1709		Mass During Intentional Weight Loss in Obese Older Adults: a Double Blind
1710	244	Randomized Controlled Trial. <i>Clin Nutr</i> 32: S3, 2013.
1711	244.	Visser M, Deeg DJH, Lips P. Low vitamin D and high parathyroid hormone
1712		levels as determinants of loss of muscle strength and muscle mass (sarcopenia):
1713		the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88: 5766–
1714	245	72, 2003.
1715	245.	Volek JS, Duncan ND, Mazzetti SA, Staron RS, Putukian M, Gómez AL,
1716		Pearson DR, Fink WJ, Kraemer WJ. Performance and muscle fiber
1717		adaptations to creatine supplementation and heavy resistance training. <i>Med Sci</i>
1718	246	Sports Exerc 31: 1147–56, 1999.
1719	246.	Vukovich MD, Dreifort GD. Effect of beta-hydroxy beta-methylbutyrate on
1720		the onset of blood lactate accumulation and VO2 peak in endurance-trained
1721		cyclists. J Strength Cond Res 15: 491–7, 2001.
1722	247.	Wächter S, Vogt M, Kreis R, Boesch C, Bigler P, Hoppeler H, Krähenbühl
1723		S. Long-term administration of L-carnitine to humans: effect on skeletal
1724		muscle carnitine content and physical performance. Clin Chim Acta 318: 51-
1725		61, 2002.
1726	248.	Wadley GD. A role for reactive oxygen species in the regulation of skeletal
1727		muscle hypertrophy. Acta Physiol (Oxf) 208: 9-10, 2013.
1728	249.	Wall BT, Hamer HM, de Lange A, Kiskini A, Groen BBL, Senden JMG,
1729		Gijsen AP, Verdijk LB, van Loon LJC. Leucine co-ingestion improves post-
1730		prandial muscle protein accretion in elderly men. Clin Nutr 32: 412–9, 2013.
1731	250.	Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald
1732		IA, Greenhaff PL. Chronic oral ingestion of L-carnitine and carbohydrate
1733		increases muscle carnitine content and alters muscle fuel metabolism during
1734		exercise in humans. J Physiol J Physiol J Physiol 5894: 963–973, 2011.
1735	251.	Wang Y, DeLuca HF. Is the vitamin d receptor found in muscle?
1736		Endocrinology 152: 354–63, 2011.
1737	252.	Ward KA, Das G, Roberts SA, Berry JL, Adams JE, Rawer R, Mughal
1738		MZ. A randomized, controlled trial of vitamin D supplementation upon
1739		musculoskeletal health in postmenarchal females. J Clin Endocrinol Metab 95:
1740		4643–51, 2010.
1741	253.	Welch AA. Nutritional influences on age-related skeletal muscle loss. Proc
1742		<i>Nutr Soc</i> 73: 16–33, 2014.
1743	254.	Wilkerson DP, Hayward GM, Bailey SJ, Vanhatalo A, Blackwell JR,
1744		Jones AM. Influence of acute dietary nitrate supplementation on 50 mile time
1745		trial performance in well-trained cyclists. Eur J Appl Physiol 112: 4127–34,
1746		2012.
1747	255.	Wilkes EA, Selby AL, Atherton PJ, Patel R, Rankin D, Smith K, Rennie
1748		MJ. Blunting of insulin inhibition of proteolysis in legs of older subjects may
1749		contribute to age-related sarcopenia. Am J Clin Nutr 90: 1343-50, 2009.
1750	256.	Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J,
1751		Loughna P, Churchward-Venne TA, Breen L, Phillips SM, Etheridge T,
1752		Rathmacher J a, Smith K, Szewczyk NJ, Atherton PJ. Effects of leucine
1753		and its metabolite β -hydroxy- β -methylbutyrate on human skeletal muscle
1754		protein metabolism. J Physiol 591: 2911-23, 2013.
1755	257.	Willoughby DS, Rosene J. Effects of oral creatine and resistance training on
1756		myosin heavy chain expression. Med Sci Sports Exerc 33: 1674–1681, 2001.
1757	258.	Willoughby DS, Rosene JM. Effects of oral creatine and resistance training on

1758		myogenic regulatory factor expression. Med Sci Sports Exerc 35: 923–929,
1759		2003.
1760	259.	Willoughby DS, Stout JR, Wilborn CD. Effects of resistance training and
1761		protein plus amino acid supplementation on muscle anabolism, mass, and
1762		strength. Amino Acids 32: 467–77, 2007.
1763	260.	Wilson GJ, Wilson JM, Manninen AH. Effects of beta-hydroxy-beta-
1764		methylbutyrate (HMB) on exercise performance and body composition across
1765		varying levels of age, sex, and training experience: A review. Nutr Metab
1766		(Lond) 5: 1–17, 2008.
1767	261.	Wilson JM, Lowery RP, Joy JM, Andersen JC, Wilson SMC, Stout JR,
1768		Duncan N, Fuller JC, Baier SM, Naimo MA, Rathmacher J. The effects of
1769		12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on
1770		muscle mass, strength, and power in resistance-trained individuals: a
1771		randomized, double-blind, placebo-controlled study. Eur J Appl Physiol 114:
1772		1217–27, 2014.
1773	262.	Winter JN, Fox TE, Kester M, Jefferson LS, Kimball SR. Phosphatidic acid
1774		mediates activation of mTORC1 through the ERK signaling pathway. $Am J$
1775	• • •	Physiol Cell Physiol 299: C335-44, 2010.
1776	263.	Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD.
1777		Myofibrillar muscle protein synthesis rates subsequent to a meal in response to
1778		increasing doses of whey protein at rest and after resistance exercise. Am J Clin
1779	264	Nutr 99: 86–95, 2014.
1780	264.	Wolfe RR . The underappreciated role of muscle in health and disease. <i>Am J</i>
1781	265	Clin Nutr 84: 475–82, 2006. Welfeen BL Chantrenung L Sexten BA Shen K Seerie SM Center
1782 1783	265.	Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM. Sestrin2 is a leucine sensor for the mTORC1 pathway.
1783		<i>Science (80-)</i> 351: 43–8, 2015.
1785	266.	Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased
1786	200.	bioavailability of vitamin D in obesity. Am J Clin Nutr 72: 690–3, 2000.
1787	267.	Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey
1788	207.	Satterfield M, Smith SB, Spencer TE, Yin Y. Arginine metabolism and
1789		nutrition in growth, health and disease. Amino Acids 37: 153–68, 2009.
1790	268.	Wu H, Xia Y, Jiang J, Du H, Guo X, Liu X, Li C, Huang G, Niu K. Effect
1791		of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older
1792		adults: A systematic review and meta-analysis. Arch Gerontol Geriatr 61: 168-
1793		175, 2015.
1794	269.	Wylie LJ, Mohr M, Krustrup P, Jackman SR, Ermidis G, Kelly J, Black
1795		MI, Bailey SJ, Vanhatalo A, Jones AM. Dietary nitrate supplementation
1796		improves team sport-specific intense intermittent exercise performance. Eur J
1797		Appl Physiol 113: 1673–1684, 2013.
1798	270.	Wylie LJL, Kelly J, Bailey SJS, Blackwell JR, Skiba PF, Winyard PG,
1799		Jeukendrup AE, Vanhatalo A, Jones AM. Beetroot juice and exercise:
1800		pharmacodynamic and dose-response relationships. J Appl Physiol 115: 325-
1801		36, 2013.
1802	271.	Xia E-Q, Wang B-W, Xu X-R, Zhu L, Song Y, Li H-B. Microwave-Assisted
1803		Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum lucidum Ait.
1804	.	Int J Mol Sci 12: 5319–5329, 2011.
1805	272.	Yfanti C, Akerström T, Nielsen S, Nielsen AR, Mounier R, Mortensen OH,
1806		Lykkesfeldt J, Rose AJ, Fischer CP, Pedersen BK. Antioxidant
1807		supplementation does not alter endurance training adaptation. Med Sci Sports

- 1808 *Exerc* 42: 1388–95, 2010.
- 1809 273. Ziegenfuss T, Lowery LM, Lemon PW. Acute fluid volume changes in men during three days of creatine supplementation. *J Exerc Physiol* 1: 1–9, 1998.
- 1811 274. Zorzano A, Fandos C, Palacín M. Role of plasma membrane transporters in muscle metabolism. *Biochem J* 349 Pt 3: 667–88, 2000.

18131814 (INSERT FIGURE HERE)

1815

1816 Figure 1. Proposed metabolism and mechanisms of action for nutrients/ nutraceuticals.

1817 \rightarrow represents activation; \rightarrow represents purported activation; --| represents purported suppression; ? unknown; 4EBP1 4E binding protein-1; AA

1818 amino acids; AMPK 5' AMP-activated protein kinase; AO antioxidants; ATP adenosine triphosphate; CARNS carnosine synthase; CHO

1819 carbohydrate; CK creatine kinase; EDG-2 endothelial differentiation gene; eEF2 eukaryotic elongation factor 2; eIF4E eukaryotic initiation

1820 factor 4E; HMB β-hydroxy-β-methylbutyrate; MPS muscle protein synthesis; mTORC1 mammalian target of rapamycin complex 1; NO₃⁻;

1821 nitrate; NO₂⁻ nitrite; NO nitric oxide; OCTN2 organic cation transporter 2; PA phosphatidic acid; PAT1 proton-coupled amino acid transporter 1;

1822 PEPT2 peptide transporter 2; PGC-1α peroxisome proliferator-activated receptor-γ coactivator-1α; RPS6 ribosomal protein S6; SLC6AS Solute

1823 Carrier Family 6 Member 8; TauT taurine transporter; UA ursolic acid; VDR vitamin D receptor; VDRE vitamin D response elements; VitD;

1824 vitamin D; VitD₃; active vitamin D.

1825

1826

1827

1828 Table 1. Summary of studies in humans demonstrating positive, negative or negligible effects of established and emerging macronutrients,

1829 micronutrients and nutraceuticals on skeletal muscle mass, metabolism and performance with or without exercise

1830 (INSERT TABLE HERE)

1831

1832 \downarrow decrease, \uparrow increase, > larger, $\leftarrow \rightarrow$ no change, 1-RM: one repetition maximum; AA: amino acids; Arg: arginine; AS: antioxidant supplement;

1833 β-ala: beta-alanaine; BRJ: beetroot juice; BW: body weight; CAR: carnitine; CHO: carbohydrate; CON: control; CONC: concentric; CPK:

1834 creatine phosphokinase; CR: creatine; CSA: cross-sectional area; d: day/s; EAA: essential amino acids; ECC: eccentric; EE: energy expenditure;

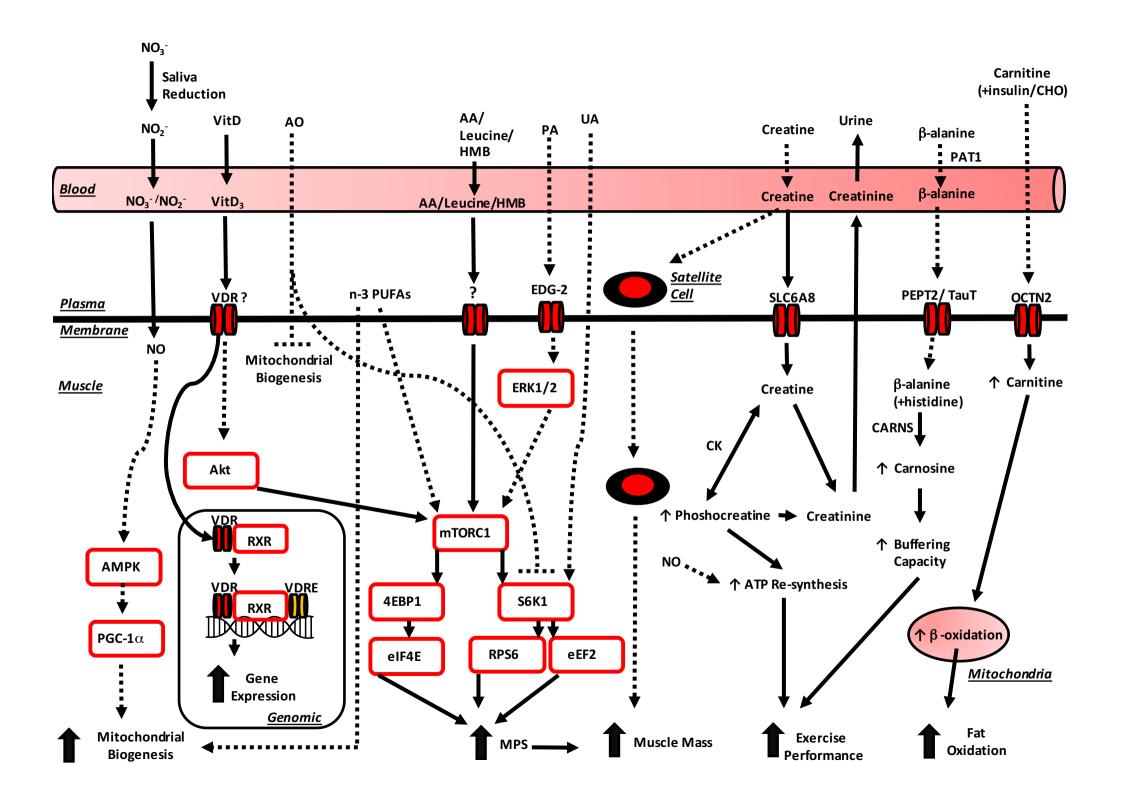
1835 EET: endurance exercise training; F: females; FFM: fat free mass; FO: fat oxidation; FSR: fractional synthesis rate; g: grams; h: hours; HIIT:

1836 high intensity interval training; HMB: β-hydroxy-β-methylbutyrate; kg: kilograms; km: kilometer; LBF: leg blood flow; LBM: lean body mass;

1837 LCA-CoA: long-chain acyl-CoA; LDH: lactate dehydrogenase; LEU: leucine; n-3 PUFAs: n-3 polyunsaturated fatty acids; NEAA: non-essential

1838 amino acids; M: males; Max: maximal; MBV: microvascular blood volume; Mg: milligrams; Min: minute; ml: milliliter; mmol: milimolar;

1839 MPO: mean power output; MPB: muscle protein breakdown; MPS: muscle protein synthesis ; mRNA: messenger ribonucleic acid; mTOR:


1840 mammalian target of rapamycin; NaNO₃: sodium nitrate; NS.: non-significant; O: old; O₂: oxygen; OBLA: onset of blood lactate accumulation;

1841 p70S6K1: ribosomal s6 kinase 1; PDH: pyruvate dehydrogenase; PLA: placebo; P_{max}: maximal power output; PPO: peak power output; PRO:

1842 protein; PWC_{FT}: Physical working capacity at the onset of neuromuscular fatigue threshold; Reps: repititions ; RE: resistance exercise ; RET:

1843 resistance exercise training; TART: tartrates; TC: total carnitine; TT: time trial; TTE: time to exaution; TUG: timed up and go; TWD: total work

done; VitD: vitamin D; VT: ventilatory thresehold; Wk/s: week/s; Y: young; yr: year; Yo-Yo IR1: Yo-Yo intermittent recovery level 1

Author	Classification	Subjects	Nutrient	Exercise/Condition	Results	Comment	Endpoint				
Macronutrients											
Bennet 1989	Macronutrient	7 M	Mixed AA	_	↑ MPS	AA alone maximally stimulate MPS	Metabolism				
Smith 1998	Macronutrient	23 M	EAA NEAA	-	$ \stackrel{\uparrow MPS}{\leftarrow \rightarrow} $	EAA driver of increased MPS	Metabolism				
Casperson 2012	Macronutrient	8 M	12g/d LEU 13d	_	↑ MPS ↑ mTOR signalling	LEU increases MPS	Metabolism				
Wall 2013	Macronutrient	24 M	n=12: 20g PRO n=12: 20g PRO + 2.5g LEU	-	>↑ MPS following PRO+LEU vs. PRO	LEU co- ingestion with PRO potentiates MPS	Metabolism				
Leucine Metabolites											
Nissen 1996	Nutraceutical	28 M	n=15: 3g/d HMB n=13: PLA 7wks	RET 6*wk 7wks	HMB ↑ LBM > placebo HMB ↑ strength	HMB plus RET potentiates gains in LBM	Mass Performance				

Wilkinson 2013	Nutraceutical	15 M	n=8: 3.42g HMB (2.42g pure HMB) n=7: 3.42 g LEU	_	HMB & LEU↑ MPS, HMB↑ mTOR signalling > LEU, HMB↓ MPB	HMB promotes ↑ MPS and ↓ MPB	Metabolism
Deutz 2013	Nutraceutical	4 M 15 F	n=11: 3g/d HMB n=8: PLA	10d bed rest	HMB ←→ LBM PLA ↓ LBM	HMB preserves muscle mass during disuse	Mass
Baier 2009	Nutraceutical	38 M 39 F	n=40: 2 or 3g HMB, 1.5 or 2.25g lysine, 5 or 7.5 g arginine & 0.1g ascorbic acid n=37: PLA lyr	-	↑ FFM	AA cocktail enhanced muscle mass	Mass
Panton 2000	Nutraceutical	39 M 36 F	n=36: HMB (3g/d) n=39: PLA	RET 3*wk 4 wks	↑ strength > PLA	HMB improved muscle function	Performance
Wilson 2014	Nutraceutical	20 M	n=11: HMB (3g/d) n=9: PLA	Periodised RET 12 wks	↑ strength, power and LBM vs. PLA	HMB enhances muscle function & hypertrophy	Mass Performance

			HMB n=8: 3g/d LEU n=8: 3g/d PLA 2wks		VO _{2peak} HMB & LEU ↑ OBLA	improves aerobic performance	
Miramonti 2016	Nutraceutical	22 M 15 F	n=14: 3g/d HMB n=14: 3g/d PLA n=9: CON 4 wks	HIIT 3*wk 4 wks	↑ PWC _{FT} following HMB > PLA & CON	HMB & HIIT improves aerobic performance	Performance
Knitter 2000	Nutraceutical	5 M 8 F	n=8: 3g/d HMB n=5: PLA 6 wks	Running >30 km/wk	Attenuated ↑ in CPK & LDH post 20 km run following HMB	HMB ameliorates aspects of muscle damage	Performance

Creatine

Greenhaff 1993	Nutraceutical	9 M 3 F	n=6: 20g/d CR + 1g/d glucose/ n=6: 24g/d glucose 5d	5 x 30 max voluntary contractions, before and after supplementation	CR ↓ peak torque decline	CR sustains performance	Performance
Birch 1994	Nutraceutical	14 M	n=7: CR 20g/d n=7: PLA 5d	3 x 30 sec max cycling sprints	CR ↑ PPO, MPO and total work output during 1 st sprint	CR increases aspects of power output	Performance

Earnest 1995	Nutraceutical	8 M	n=4: 5g/d CR n=4: PLA 2-4 wks	3 x 30 sec max cycling 1-RM test 70% of 1-RM until fatigue	CR ↑ total anaerobic work during cycling sprints, ↑ BW, ↑ total lifting volume	CR enhances muscle function	Mass & Performance
Cooke 1995	Nutraceutical	12 M	n=6: 5g CR + 1g glucose n=6: PLA 5d	Max cycling sprint	←→ in power indices	CR does not affect power output	Performance
Mujika 1996	Nutraceutical	11 M 9 F	n=10: 20g/d CR n=10: PLA 1 wk	20, 50 & 100 m max swim	No difference in race time between groups	CR has no ergogenic benefits on sprint performance	Performance
Snow 1998	Nutraceutical	8 M	n=4: 30g/d CR + 30g/d dextrose n=4: PLA 5d	20 sec max cycling	CR did not affect power indices	CR has no ergogenic benefits on sprint performance	Performance
Thompson 1996	Nutraceutical	10 F	n=5: 2g/d CR n=5: PLA 6 wks	6 wks swimming (part of a swim team)	←→ in lean mass, resynthesis of PCr or performance time	CR has no effect on body composition, anaerobic or aerobic performance	Mass & Performance
Cooke 2009	Nutraceutical	14 M	n=7: 0.1- 0.3g/kg/d CR + CHO n=7: CHO 19d	4 sets, 10 ECC reps (a) 120% of CONC 1-RM for 3 leg exercises	CR+CHO ↑ isokinetic & isometric strength during recovery vs. CHO	CR improves functional recovery	Performance

Volek 1999	Nutraceutical	19 M	n=10: 25 g/d 1 wk, 5 g/d 11 wks CR n=9: PLA	RET 12 wks	> ↑ in strength, CSA, following CR vs. PLA	CR potentiates RET-induced muscle adaptations	Mass & Performance
Brose 2003	Nutraceutical	15 M 13 F	n=14: 5g/d CR + 2g dextrose n=14: pla	RET 3*wk, 14 wks	> ↑ in FFM and strength following CR vs. PLA	CR potentiates RET-induced mass and functional adaptations	Mass & Performance
				Carnitine			
Stephens 2006	Nutraceutical	7 M	n=7: 5h CAR infusion (15 mg/kg prime, 10 mg/kg h constant) n=7: PLA	-	CAR ↑ muscle glycogen, LCA-CoA & ↓ PDH complex activity, lactate vs. PLA	CAR can inhibit CHO oxidation	Fuel Metabolism
Wall 2011	Nutraceutical	14 M	n=7: 2 g CAR + 80 g CHO n=7: 80 g CHO 2*d, 24 wks	30 mins cycling @ 50% VO _{2max} , 30 mins at 80% VO _{2max} , 30 min all- out	@ 50% VO _{2max} carnitine ↓ glycogen use	CAR spares muscle glycogen	Metabolism & Performance
Stephens 2013	Nutraceutical	12 M	n=6: 1.36 CAR + 80g CHO n=6: 80g CHO 2*d, 12 wks	30 min cycling @ 50% VO _{2max}	CAR ↑ LCA-CoA ↑ fat mass in CHO	CAR prevented fat mass gain	Metabolism

Abramowicz 2005	Nutraceutical	6 M 6 F	n=12: 1*3g CAR + TART n=12: 3g/d CAR + TART, 14d n=12: PLA, 14d	60 min cycling @ 60% VO _{2max}	CAR + TART for 14d ↑ CHO oxidation in M vs. PLA No effect on FO	CAR & TART promote CHO oxidation during exercise	Metabolism
Broad 2005	Nutraceutical	15 M	n=15: 3g/d CAR + TART n=15: PLA 4 wks	90 min cycling @ 65% VO _{2max} , 20 km TT	FO and CHO similar between CAR & TART vs. PLA during exercise TT duration ↓ in PLA only	CAR & TART enhance energy metabolism or endurance performance	Energy Metabolism & Performance
				n-3 PUFAs			
Smith 2011	Nutraceutical	5 M 4 F	4g/d n-3 PUFAs 8 wks	_	↑ MPS & ↑ mTOR signalling during hyperinsulinaemia- hyperaminoacidaemia	n-3 PUFAs augments acute anabolic responses	Metabolism
Smith 2011	Nutraceutical	15 M 29 F	n=29: 4 g/d n- 3 PUFAs n=15: corn oil 6 months	-	n-3 PUFAs ↑ mass & ↑ strength vs. corn oil	n-3 PUFAs promotes muscle growth	Mass
Huffman 2004	Nutraceutical	7 M	n-3 PUFAs 4 g/d 3 wks	60 mins running @ 60% VO _{2max}	↑ fat EE	Chronic n-3 PUFAs promote fat oxidation during exercise	Metabolism

Logan 2015	Nutraceutical	24 F	n=12: 2g/d EPA + 1g/d DHA n=12: PLA 12 wks	Pre & post exercise testing	n-3 PUFAs ↑ LBM, ↑ rate of FO & ↓ TUG	n-3 PUFAs promotes fat metabolism, muscle mass and function	Mass, Fat Metabolism and Performance
Smith 2015	Nutraceutical	10 M 29 F	N=29: 1.86g/d EPA + 1.5 g/d DHA N=25: PLA 24 wks	-	n-3 PUFAs ↑ muscle volume & strength vs. PLA	n-3 PUFAs preserve muscle mass and function	Mass & Performance
Rodacki 2012	Nutraceutical	45 F	n=15: 400 g/d EPA + 300g/d DHA 90d + RET n=15: 400 g/d EPA + 300g/d DHA 150d + RET N=15: RET	RET 3*wk, 12 wks	>↑ in peak torque following n3-PUFAs vs. RET	n3-PUFAs potentiate strength adaptations to RET	Strength Performance
McGlory 2016	Nutraceutical	19 M	n=10: 5g/d n3-PUFAs n=9: PLA 8 wks	Acute RE 3 sets, 10 reps @ 70% 1-RM	Rest and exercise MPS similar following n3-PUFAs vs. PLA ↑ p70S6K1 after RE in PLA only	n3-PUFAs does not potentiate RE- induced metabolic responses	Metabolism
Delarue 1996	Nutraceutical	4 M 1 F	n=5: 6g/d n-3 PUFAs n=5: PLA 3 wks	-	n-3 PUFAs ↑ FO & ↓ CHO oxidation	n-3 PUFAs manipulates energy metabolism	Energy Metabolism

Delarue 2003	Nutraceutical	6 M	n=6: 6g/d n-3 PUFAs n=6: PLA 20d	Acute 90 min cycling @ 60% max O ₂ output	n-3 PUFAs tended to ↑ FO and ↓ CHO oxidation > PLA	n-3 PUFAs might manipulate energy metabolism during exercise	Energy metabolism
			Nit	rates/Blood flow		•••••••	
Tang 2011	Nutraceutical	8 M	n=8: 10g EAA + 10g Arg n=8: PLA	Unilateral acute RE, 5 sets 8-10 reps	↑ in blood flow and MPS following RE similar in Arg vs. PLA	Arg has no additive effects on muscle blood flow or MPS	Protein Metabolism
Churchward- Venne 2014	Nutraceutical	21 M	n=7: 45g Whey n=7: 10g citrulline + 15g whey n=7: 10g NEAA + 15g whey	Acute RE: 6x8-10 reps @ 80% 10-RM knee extension	No ↑ in MPS, blood flow or perfusion following citrulline+whey vs. NEAA+whey	No additive effect of citrulline on metabolism	Protein Metabolism
Phillips 2016	Nutraceutical	20 M	n=10: 350 mg cocoa flavanol n=10: CON	-	↑ LBF and MBV following cocoa flavanol ←→ MPS following cocoa flavanol vs. CON	Cocoa flavanols improve vascular but not MPS responses to nutrition	Protein Metabolism
Lansley 2011	Nutraceutical	9 M	n=9: 500 ml BRJ n=9: 500 ml PLA	4 & 16.1 km cycling TT	↑ TT performance	Nitrates improve TT performance	Performance
Larsen 2007	Nutraceutical	9 M	n=9: 0.1mmol kg/d NaNO ₃ n=9: PLA 3d	Sub-max and max cycling	NaNO ₃ ↓V _{O2} at sub- max vs. PLA	NaNO ₃ reduced O ₂ cost during sub-max exercise	Performance

Bailey 2009	Nutraceutical	8 M	n=8: 500ml/d BRJ n=8: PLA 6d	Moderate & intense exercise	BRJ ↓V ₀₂ during moderate exercise vs. PLA BRJ ↑ TTE during intense exercise	BRJ can reduce O ₂ cost & improve exercise tolerance	Performance
Muggeridge 2014	Nutraceutical	9 M	n=9: 1*70ml BRJ n=9: PLA	15 min steady state, 5 min rest, 16.1 km TT	BRJ ↓V ₀₂ during moderate exercise vs. PLA TT performance was faster following BRJ	BRJ enhances endurance performance	Performance
Wylie 2013	Nutraceutical	14 M	n=14: 490ml BRJ over 30h n=14: PLA	Yo-Yo IR1	BRJ↑Yo-Yo IR1 performance vs. PLA	BRJ improved high intensity running performance	Performance
Arnold 2015	Nutraceutical	10 M	n=10: 70 ml BRJ n=10: PLA	Incremental treadmill running + 10km TT	BRJ did not change TTE during incremental exercise or time to completion in the TT vs. PLA	BRJ does not enhance endurance running	Performance
Cermak 2012	Nutraceutical	20 M	n= 20: 1*140 ml BRJ n=20: PLA	1h cycling TT	TT performance & power output similar between BRJ vs. PLA	BRJ does not improve endurance performance	Performance
Wilkerson 2012	Nutraceutical	8 M	n=8: 1*500ml BRJ n=8: PLA	50 mile cycling TT	No difference between BRJ vs. PLA for completion time & power output Trend for BRJ $\downarrow V_{O2}$	BRJ did not improve TT performance	Performance
			β-alani	ine and Carnosine			
Kendrick 2008	Nutraceutical	26 M	n=13: 6.4g/d β-ala n=13: PLA 4 wks	RET 4*wk, 10 wks	Similar ↑ in strength & body mass	No additive effect of β-ala on strength, mass	Mass & Performance

Hill 2007	Nutraceutical	25 M	n=13: 4- 6.4g/d β-ala n=12: PLA	-	4 & 10 wks of β- ala ↑ TWD during cycling	β-ala improves exercise capacity	Performance
Derave 2007	Nutraceutical	15 M	n=8: 4.8g/d β- ala n=7: PLA 4-5wks	Track & field ~5*wk	β-ala ↑ knee torque during repetitive exercise bouts	β-ala attenuates fatigue	Performance
Stout 2007	Nutraceutical	22 F	n=11: 3.2- 6.4g/d β-ala n=11: PLA 4 wks	-	β-ala↑PWC _{FT} , VT & TTE	β-ala delays the onset of neuromuscular fatigue	Performance
				VitD			
Agergaard 2015	Micronutrient	17 M, Y 17 M, O	n=7 Y, 7 O: 1920 IU/d VitD + 800 mg/d calcium n=10 Y, 10 O: 800 mg/d calcium 16 wks	RET 3*wk @ 65- 85% 1-RM, 12 wks	Fibre type IIa %age > ↑ & myostatin mRNA > ↓ in Y VitD vs. Y pla No difference in the ↑ of CSA and strength in VitD vs. calcium	But no additive effect on mass or strength	Mass and Performance
Carrilo 2013	Micronutrient	11 M 12 F	n=10: 4000 IU/d VitD n=13: PLA	RET 3*wk @ 70- 80% 1-RM, 3 months	←→ LBM following VitD or PLA ↑ peak power following VitD	VitD has no impact on mass but can improve muscle power	Mass & Performance
Bunout 2006	Micronutrient	10 M 86 F	n=24: 800 mg/d calcium + 400 IU/d VitD n=24: 800 mg/d calcium n=24: 800 mg/d calcium	RET 2*wk, 9 months	> improvement in TUG in VitD + RET vs. RET	VitD enhances muscle function	Performance

Ceglia 2013	Micronutrient	21 F	+ 400 IU/d VitD + RET n=24: 800 mg/d calcium & RET 4000 IU/d VitD	_	↑ type I/II CSA	VitD increases muscle fibre	Mass
			4 months			size	
				VitC and VitE			
Bobeuf 2010	Micronutrient	23 M, 25 F	n=11: AS (1000 mg/d VitC & 600 mg/d VitE) n=12: PLA n=13: RET n=12: AS+RET	RET 3*wk @ 80% 1-RM, 6 months	>↑FFM in AS+RET vs. PLA, RET or AS.	AS potentiates RET-induced gains in FFM	Mass
Bjørnsen 2015	Micronutrient	34 M	n=17: AS (1000 mg/d VitC + VitE 235 mg/d) n=17: PLA	RET 3*wk, 3 months	> ↑ in total LBM and muscle thickness in PLA vs. AS	AS blunt ↑ in total LBM	Mass
Paulsen 2014	Micronutrient	21 M 11 F	n=17: AS (1000 mg/d VitC + 235 mg/d VitE) n=15: PLA	RET 4*wk, 10 wks	>↑ p38 MAPK, p70S6K,↑ ERK1/2 in PLA vs. AS Similar changes in FSR, CSA & total LM	AS altered protein signalling but not muscle hypertrophy	Mass & Metabolism
Labontè 2008	Micronutrient	27 M 34 F	600 mg VitE + 1000 mg VitC 6 months	RET 3*wk, 6 months	> ↑ FFM compared to RET alone	AS potentiate FFM gains	Mass

Bobeuf 2011	Micronutrient	27 M 30 F	n=11: AS (1000 mg/d VitC + 600 mg/d VitE) n=12: PLA n=13: RET n=12: AS+RET	RET 3*wk @ 80% 1-RM, 6 months	Similar ↑ in FFM and strength in AS+RET vs. RET	AS do not maximize strength or mass gains	Mass & Performance
Paulsen 2014	Micronutrient	26 M 28 F	n=27: AS (1000 mg/d VitC + 600 mg/d VitE) n=27: PLA	EET 3-4*wk, 11 wks	Similar \uparrow in VO _{2max} $\leftarrow \rightarrow COX4$ and PGC-1 α	AS hampered mitochondrial cellular adaptations	Performance
Yfanti 2010	Micronutrient	21 M	n=11: AS (500 mg/d VitC + VitE 400 IU/d) n=10: PLA 16 wks	EET 5*wk, 12 wks	Similar ↑ in VO _{2max} , P _{max} , workload at LT, muscle glycogen, muscle enzyme activity	AS have no effect on adaptation to EET	Performance
Gomez- Cabrera 2008	Micronutrient	14 M	n=5: VitC 1g/d + EET n=9: EET	EET 3*wk 65-80% of VO _{2max} , 8 wks	Similar ↑ in VO _{2max}	VitC has no effect on adaptation to EET	Performance
				Ursolic Acid			
Bang 2014	Nutraceutical	16 M	n=9: 450 mg/d UA n=7: PLA	RET 6*wk @60- 80% 1-RM, 8 weeks	> ↑ strength vs. PLA ←→ LBM in UA or PLA	UA promotes gains in strength but not LBM	Performance
			Ph	osphatidic Acid			
Joy 2014	Nutraceutical	28 M	n=14: 750 mg/d PA n=14: PLA	RET 3*wk, 8 wks	>↑ LBM, CSA & strength vs. PLA	PA potentiates RET-induced mass and strength gains	Mass & Performance

Hoffman 2012	Nutraceutical	16 M	n=7: 750 mg	RET 4*wk @ 70%	NS.↑LBM	PA did not	Mass &
			PA	1-RM, 8 wks	& strength	potentiate	Performance
			n=9: PLA		-	RET-induced	
						gains in mass	
						or strength	