15 research outputs found

    Crystallization and preliminary X-ray structural studies of a Melan-A pMHC-TCR complex

    Get PDF
    Melanocytes are specialized pigmented cells that are found in all healthy skin tissue. In certain individuals, diseased melanocytes can form malignant tumours, melanomas, which cause the majority of skin-cancer-related deaths. The melanoma-associated antigenic peptides are presented on cell surfaces via the class I major histocompatibility complex (MHC). Among the melanoma-associated antigens, the melanoma self-antigen A/melanoma antigen recognized by T cells (Melan-A/MART-1) has attracted attention because of its wide expression in primary and metastatic melanomas. Here, a preliminary X-ray crystal structural study of a soluble cognate T-cell receptor (TCR) in complex with a pMHC presenting the Melan-A peptide (ELAGIGILTV) is reported. The TCR and pMHC were refolded, purified and mixed together to form complexes, which were crystallized using the sitting-drop vapour-diffusion method. Single TCR–pMHC complex crystals were cryocooled and used for data collection. Diffraction data showed that these crystals belonged to space group P4(1)/P4(3), with unit-cell parameters a = b = 120.4, c = 81.6 Å. A complete data set was collected to 3.1 Å and the structure is currently being analysed

    Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy

    Get PDF
    Natural T-cell responses generally lack the potency to eradicate cancer. Enhanced affinity T-cell receptors (TCRs) provide an ideal approach to target cancer cells, with emerging clinical data showing significant promise. Nevertheless, the risk of off target reactivity remains a key concern, as exemplified in a recent clinical report describing fatal cardiac toxicity, following administration of MAGE-A3 specific TCR-engineered T-cells, mediated through cross-reactivity with an unrelated epitope from the Titin protein presented on cardiac tissue. Here, we investigated the structural mechanism enabling TCR cross-recognition of MAGE-A3 and Titin, and applied the resulting data to rationally design mutants with improved antigen discrimination, providing a proof-of-concept strategy for altering the fine specificity of a TCR towards an intended target antigen. This study represents the first example of direct molecular mimicry leading to clinically relevant fatal toxicity, mediated by a modified enhanced affinity TCR designed for cancer immunotherapy. Furthermore, these data demonstrate that self-antigens that are expressed at high levels on healthy tissue should be treated with extreme caution when designing immuno-therapeutics

    Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA

    Get PDF
    Tumor-associated peptide–human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface–expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents

    An approved in vitro approach to preclinical safety and efficacy evaluation of engineered T cell receptor anti-CD3 bispecific (ImmTAC) molecules.

    No full text
    Robust preclinical testing is essential to predict clinical safety and efficacy and provide data to determine safe dose for first-in-man studies. There are a growing number of examples where the preclinical development of drugs failed to adequately predict clinical adverse events in part due to their assessment with inappropriate preclinical models. Preclinical investigations of T cell receptor (TCR)-based immunotherapies prove particularly challenging as these biologics are human-specific and thus the conventional testing in animal models is inadequate. As these molecules harness the full force of the immune system, and demonstrate tremendous potency, we set out to design a preclinical package that would ensure adequate evaluation of these therapeutics. Immune Mobilising Monoclonal TCR Against Cancer (ImmTAC) molecules are bi-specific biologics formed of an affinity-enhanced TCR fused to an anti-CD3 effector function. ImmTAC molecules are designed to activate human T lymphocytes and target peptides within the context of a human leukocyte antigen (HLA), thus require an intact human immune system and peptidome for suitable preclinical screening. Here we draw upon the preclinical testing of four ImmTAC molecules, including IMCgp100, the first ImmTAC molecule to reach the clinic, to present our comprehensive, informative and robust approach to in vitro preclinical efficacy and safety screening. This package comprises a broad range of cellular and molecular assays using human tissues and cultured cells to test efficacy, safety and specificity, and hence predict human responses in clinical trials. We propose that this entirely in vitro package offers a potential model to be applied to screening other TCR-based biologics

    Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors

    Get PDF
    NY-ESO-1 and LAGE-1 are cancer testis antigens with an ideal profile for tumor immunotherapy, combining up-regulation in many cancer types with highly restricted expression in normal tissues and sharing a common HLA-A*0201 epitope, 157–165. Here, we present data to describe the specificity and anti-tumor activity of a bifunctional ImmTAC, comprising a soluble, high-affinity T-cell receptor (TCR) specific for NY-ESO-1157–165 fused to an anti-CD3 scFv. This reagent, ImmTAC-NYE, is shown to kill HLA-A2, antigen-positive tumor cell lines, and freshly isolated HLA-A2- and LAGE-1-positive NSCLC cells. Employing time-domain optical imaging, we demonstrate in vivo targeting of fluorescently labelled high-affinity NYESO-specific TCRs to HLA-A2-, NYESO- 1157–165-positive tumors in xenografted mice. In vivo ImmTAC-NYE efficacy was tested in a tumor model in which human lymphocytes were stably co-engrafted into NSG mice harboring tumor xenografts; efficacy was observed in both tumor prevention and established tumor models using a GFP fluorescence readout. Quantitative RT-PCRwas used to analyze the expression of both NY-ESO-1 and LAGE-1 antigens in 15 normal tissues, 5 cancer cell lines, 10 NSCLC, and 10 ovarian cancer samples. Overall, LAGE-1 RNA was expressed at a greater frequency and at higher levels than NY-ESO-1 in the tumor samples. These data support the clinical utility of ImmTAC-NYE as an immunotherapeutic agent for a variety of cancers

    Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA

    No full text
    Tumor-associated peptide–human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface–expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents
    corecore