349 research outputs found

    Ecological succession of a Jurassic shallow-water ichthyosaur fall.

    Get PDF
    After the discovery of whale fall communities in modern oceans, it has been hypothesized that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting long-lived and specialized animal communities. Here, we report a fully documented ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological succession of its micro- and macrofauna. The early 'mobile-scavenger' and 'enrichment-opportunist' stages were not succeeded by a 'sulphophilic stage' characterized by chemosynthetic molluscs, but instead the bones were colonized by microbial mats that attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension feeders indicate a well-developed 'reef stage' with prolonged exposure and colonization of the bones prior to final burial, unlike in modern whale falls where organisms such as the ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur falls thus fulfilled similar ecological roles to shallow whale falls, and did not support specialized chemosynthetic communities

    Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, <it>Riftia pachyptila</it>, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift.</p> <p>Results</p> <p>Genetic differentiation (<it>F</it><sub><it>ST</it></sub>) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically.</p> <p>Conclusions</p> <p>Compared to other vent species, DNA sequence diversity is extremely low in <it>R. pachyptila</it>. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events.</p

    New Copy Number Variations in Schizophrenia

    Get PDF
    Genome-wide screenings for copy number variations (CNVs) in patients with schizophrenia have demonstrated the presence of several CNVs that increase the risk of developing the disease and a growing number of large rare CNVs; the contribution of these rare CNVs to schizophrenia remains unknown. Using Affymetrix 6.0 arrays, we undertook a systematic search for CNVs in 172 patients with schizophrenia and 160 healthy controls, all of Italian origin, with the aim of confirming previously identified loci and identifying novel schizophrenia susceptibility genes. We found five patients with a CNV occurring in one of the regions most convincingly implicated as risk factors for schizophrenia: NRXN1 and the 16p13.1 regions were found to be deleted in single patients and 15q11.2 in 2 patients, whereas the 15q13.3 region was duplicated in one patient. Furthermore, we found three distinct patients with CNVs in 2q12.2, 3q29 and 17p12 loci, respectively. These loci were previously reported to be deleted or duplicated in patients with schizophrenia but were never formally associated with the disease. We found 5 large CNVs (>900 kb) in 4q32, 5q14.3, 8q23.3, 11q25 and 17q12 in five different patients that could include some new candidate schizophrenia susceptibility genes. In conclusion, the identification of previously reported CNVs and of new, rare, large CNVs further supports a model of schizophrenia that includes the effect of multiple, rare, highly penetrant variants

    Sex-Dependent Novelty Response in Neurexin-1α Mutant Mice

    Get PDF
    Neurexin-1 alpha (NRXN1α) belongs to the family of cell adhesion molecules (CAMs), which are involved in the formation of neuronal networks and synapses. NRXN1α gene mutations have been identified in neuropsychiatric diseases including Schizophrenia (SCZ) and Autism Spectrum Disorder (ASD). In order to get a better understanding of the pleiotropic behavioral manifestations caused by NRXN1α gene mutations, we performed a behavioral study of Nrxn1α heterozygous knock-out (+/−) mice and observed increased responsiveness to novelty and accelerated habituation to novel environments compared to wild type (+/+) litter-mates. However, this effect was mainly observed in male mice, strongly suggesting that gender-specific mechanisms play an important role in Nrxn1α-induced phenotypes

    The Genetic Effect of Copy Number Variations on the Risk of Type 2 Diabetes in a Korean Population

    Get PDF
    BACKGROUND: Unlike Caucasian populations, genetic factors contributing to the risk of type 2 diabetes mellitus (T2DM) are not well studied in Asian populations. In light of this, and the fact that copy number variation (CNV) is emerging as a new way to understand human genomic variation, the objective of this study was to identify type 2 diabetes-associated CNV in a Korean cohort. METHODOLOGY/PRINCIPAL FINDINGS: Using the Illumina HumanHap300 BeadChip (317,503 markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 275 patients with type 2 diabetes mellitus (T2DM) and 496 nondiabetic subjects (Total n = 771). To increase the sensitivity of CNV identification, we incorporated multiple factors using PennCNV, a program that is based on the hidden Markov model (HMM). To assess the genetic effect of CNV on T2DM, a multivariate logistic regression model controlling for age and gender was used. We identified a total of 7,478 CNVs (average of 9.7 CNVs per individual) and 2,554 CNV regions (CNVRs; 164 common CNVRs for frequency>1%) in this study. Although we failed to demonstrate robust associations between CNVs and the risk of T2DM, our results revealed a putative association between several CNVRs including chr15:45994758-45999227 (P = 8.6E-04, P(corr) = 0.01) and the risk of T2DM. The identified CNVs in this study were validated using overlapping analysis with the Database of Genomic Variants (DGV; 71.7% overlap), and quantitative PCR (qPCR). The identified variations, which encompassed functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the development process, in cell communication, in signal transduction, and in biological regulation. CONCLUSION/SIGNIFICANCE: We expect that the methods and findings in this study will contribute in particular to genome studies of Asian populations

    Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica

    Get PDF
    The maximum size and age that clonal organisms can reach remains poorly known, although we do know that the largest natural clones can extend over hundreds or thousands of metres and potentially live for centuries. We made a review of findings to date, which reveal that the maximum clone age and size estimates reported in the literature are typically limited by the scale of sampling, and may grossly underestimate the maximum age and size of clonal organisms. A case study presented here shows the occurrence of clones of slow-growing marine angiosperm Posidonia oceanica at spatial scales ranging from metres to hundreds of kilometres, using microsatellites on 1544 sampling units from a total of 40 locations across the Mediterranean Sea. This analysis revealed the presence, with a prevalence of 3.5 to 8.9%, of very large clones spreading over one to several (up to 15) kilometres at the different locations. Using estimates from field studies and models of the clonal growth of P. oceanica, we estimated these large clones to be hundreds to thousands of years old, suggesting the evolution of general purpose genotypes with large phenotypic plasticity in this species. These results, obtained combining genetics, demography and model-based calculations, question present knowledge and understanding of the spreading capacity and life span of plant clones. These findings call for further research on these life history traits associated with clonality, considering their possible ecological and evolutionary implications

    Loss of Sexual Reproduction and Dwarfing in a Small Metazoan

    Get PDF
    Asexuality has major theoretical advantages over sexual reproduction, yet newly formed asexual lineages rarely endure. The success, or failure, of such lineages is affected by their mechanism of origin, because it determines their initial genetic makeup and variability. Most previously described mechanisms imply that asexual lineages are randomly frozen subsamples of a sexual population.We found that transitions to obligate parthenogenesis (OP) in the rotifer Brachionus calyciflorus, a small freshwater invertebrate which normally reproduces by cyclical parthenogenesis, were controlled by a simple Mendelian inheritance. Pedigree analysis suggested that obligate parthenogens were homozygous for a recessive allele, which caused inability to respond to the chemical signals that normally induce sexual reproduction in this species. Alternative mechanisms, such as ploidy changes, could be ruled out on the basis of flow cytometric measurements and genetic marker analysis. Interestingly, obligate parthenogens were also dwarfs (approximately 50% smaller than cyclical parthenogens), indicating pleiotropy or linkage with genes that strongly affect body size. We found no adverse effects of OP on survival or fecundity.This mechanism of inheritance implies that genes causing OP may evolve within sexual populations and remain undetected in the heterozygous state long before they get frequent enough to actually cause a transition to asexual reproduction. In this process, genetic variation at other loci might become linked to OP genes, leading to non-random associations between asexuality and other phenotypic traits
    corecore