14 research outputs found

    Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C\u3csub\u3e4\u3c/sub\u3e genus Spartina (Poaceae)

    Get PDF
    Leaf anatomy, stomatal density, and leaf conductance were studied in 10 species of Spartina (Poaceae) from low versus high salt marsh, and freshwater habitats. • Internal structure, external morphology, cuticle structure, and stomatal densities were studied with light and electron microscopy. Functional significance of leaf structure was examined by measures of CO2 uptake and stomatal distributions. • All species have Kranz anatomy and C 4 δ13C values. Freshwater species have thin leaves with small ridges on adaxial sides and stomata on both adaxial and abaxial sides. By contrast, salt marsh species have thick leaves with very pronounced ridges on the adaxial side and stomata located almost exclusively on adaxial leaf surfaces. Salt marsh species also have a thicker cuticle on the abaxial than on the adaxial side of leaves, and CO2 uptake during photosynthesis is restricted to the adaxial leaf surface. • Salt marsh species are adapted to controlling water loss by having stomata in leaf furrows on the adaxial side, which increases the boundary layer, and by having large leaf ridges that fit together as the leaf rolls during water stress. Differences in structural-functional features of photosynthesis in Spartina species are suggested to be related to adaptations to saline environments

    Functional Characterization of Phosphoenolpyruvate Carboxykinase-Type C4 Leaf Anatomy: Immuno-, Cytochemical and Ultrastructural Analyses

    No full text
    • Background and Aims Species having C4 photosynthesis belonging to the phosphoenolpyruvate carboxykinase (PEP-CK) subtype, which are found only in family Poaceae, have the most complex biochemistry among the three C4 subtypes. In this study, biochemical (western blots and immunolocalization of some key photosynthetic enzymes) and structural analyses were made on several species to further understand the PEP-CK system. This included PEP-CK-type C4 species Urochloa texana (subfamily Panicoideae), Spartina alterniflora and S. anglica (subfamily Chloridoideae), and an NADP-ME-type C4 species, Echinochloa frumentacea, which has substantial levels of PEP-CK

    Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis

    No full text
    In subfamily Salsoloideae (family Chenopodiaceae) most species are C 4 plants having terete leaves with Salsoloid Kranz anatomy characterized by a continuous dual chlorenchyma layer of Kranz cells (KCs) and mesophyll (M) cells, surrounding water storage and vascular tissue. From section Coccosalsola sensu Botschantzev, leaf structural and photosynthetic features were analysed on selected species of Salsola which are not performing C 4 based on leaf carbon isotope composition. The results infer the following progression in distinct functional and structural forms from C 3 to intermediate to C 4 photosynthesis with increased leaf succulence without changes in vein density: From species performing C 3 photosynthesis with Sympegmoid anatomy with two equivalent layers of elongated M cells, with few organelles in a discontinuous layer of bundle sheath (BS) cells ( S. genistoides , S. masenderanica , S. webbii ) > development of proto-Kranz BS cells having mitochondria in a centripetal position and increased chloroplast number ( S. montana ) > functional C 3 –C 4 intermediates having intermediate CO 2 compensation points with refixation of photorespired CO 2 , development of Kranz-like anatomy with reduction in the outer M cell layer to hypodermal-like cells, and increased specialization (but not size) of a Kranz-like inner layer of cells with increased cell wall thickness, organelle number, and selective expression of mitochondrial glycine decarboxylase (Kranz-like Sympegmoid, S. arbusculiformis ; and Kranz-like Salsoloid, S. divaricata ) > selective expression of enzymes between the two cell types for performing C 4 with Salsoloid-type anatomy. Phylogenetic analysis of tribe Salsoleae shows the occurrence of C 3 and intermediates in several clades, and lineages of interest for studying different forms of anatomy

    Diversity in forms of C4 in the genus Cleome (Cleomaceae)

    No full text
    Cleomaceae is one of 19 angiosperm families in which C(4) photosynthesis has been reported. The aim of the study was to determine the type, and diversity, of structural and functional forms of C(4) in genus Cleome. Methods Plants of Cleome species were grown from seeds, and leaves were subjected to carbon isotope analysis, light and scanning electron microscopy, western blot analysis of proteins, and in situ immunolocalization for ribulose bisphosphate carboxylase oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC). Three species with C(4)-type carbon isotope values occurring in separate lineages in the genus (Cleome angustifolia, C. gynandra and C. oxalidea) were shown to have features of C(4) photosynthesis in leaves and cotyledons. Immunolocalization studies show that PEPC is localized in mesophyll (M) cells and Rubisco is selectively localized in bundle sheath (BS) cells in leaves and cotyledons, characteristic of species with Kranz anatomy. Analyses of leaves for key photosynthetic enzymes show they have high expression of markers for the C(4) cycle (compared with the C(3)-C(4) intermediate C. paradoxa and the C(3) species C. africana). All three are biochemically NAD-malic enzyme sub-type, with higher granal development in BS than in M chloroplasts, characteristic of this biochemical sub-type. Cleome gynandra and C. oxalidea have atriplicoid-type Kranz anatomy with multiple simple Kranz units around individual veins. However, C. angustifolia anatomy is represented by a double layer of concentric chlorenchyma forming a single compound Kranz unit by surrounding all the vascular bundles and water storage cells. NAD-malic enzyme-type C(4) photosynthesis evolved multiple times in the family Cleomaceae, twice with atriplicoid-type anatomy in compound leaves having flat, broad leaflets in the pantropical species C. gynandra and the Australian species C. oxalidea, and once by forming a single Kranz unit in compound leaves with semi-terete leaflets in the African species C. angustifolia. The leaf morphology of C. angustifolia, which is similar to that of the sister, C(3)-C(4) intermediate African species C. paradoxa, suggests adaptation of this lineage to arid environments, which is supported by biogeographical information
    corecore