22 research outputs found

    Meta-signature of human endometrial receptivity : a meta-analysis and validation study of transcriptomic biomarkers

    Get PDF
    Previous transcriptome studies of the human endometrium have revealed hundreds of simultaneously up-and down-regulated genes that are involved in endometrial receptivity. However, the overlap between the studies is relatively small, and we are still searching for potential diagnostic biomarkers. Here we perform a meta-analysis of endometrial-receptivity associated genes on 164 endometrial samples (76 from 'pre-receptive' and 88 from mid-secretory, 'receptive' phase endometria) using a robust rank aggregation (RRA) method, followed by enrichment analysis, and regulatory microRNA prediction. We identify a meta-signature of endometrial receptivity involving 57 mRNA genes as putative receptivity markers, where 39 of these we confirm experimentally using RNA-sequencing method in two separate datasets. The meta-signature genes highlight the importance of immune responses, the complement cascade pathway and the involvement of exosomes in mid-secretory endometrial functions. Bioinformatic prediction identifies 348 microRNAs that could regulate 30 endometrial-receptivity associated genes, and we confirm experimentally the decreased expression of 19 microRNAs with 11 corresponding up-regulated meta-signature genes in our validation experiments. The 57 identified meta-signature genes and involved pathways, together with their regulatory microRNAs could serve as promising and sought-after biomarkers of endometrial receptivity, fertility and infertility.Peer reviewe

    Systematic Prioritization of Candidate Genes in Disease Loci Identifies TRAFD1 as a Master Regulator of IFN gamma Signaling in Celiac Disease

    Get PDF
    Celiac disease (CeD) is a complex T cell-mediated enteropathy induced by gluten. Although genome-wide association studies have identified numerous genomic regions associated with CeD, it is difficult to accurately pinpoint which genes in these loci are most likely to cause CeD. We used four different in silico approaches-Mendelian randomization inverse variance weighting, COLOC, LD overlap, and DEPICT-to integrate information gathered from a large transcriptomics dataset. This identified 118 prioritized genes across 50 CeD-associated regions. Co-expression and pathway analysis of these genes indicated an association with adaptive and innate cytokine signaling and T cell activation pathways. Fifty-one of these genes are targets of known drug compounds or likely druggable genes, suggesting that our methods can be used to pinpoint potential therapeutic targets. In addition, we detected 172 gene combinations that were affected by our CeD-prioritized genes in trans. Notably, 41 of these trans-mediated genes appear to be under control of one master regulator, TRAF-type zinc finger domain containing 1 (TRAFD1), and were found to be involved in interferon (IFN)gamma signaling and MHC I antigen processing/presentation. Finally, we performed in vitro experiments in a human monocytic cell line that validated the role of TRAFD1 as an immune regulator acting in trans. Our strategy confirmed the role of adaptive immunity in CeD and revealed a genetic link between CeD and IFN gamma signaling as well as with MHC I antigen processing, both major players of immune activation and CeD pathogenesis

    Large-scale association analyses identify host factors influencing human gut microbiome composition

    Get PDF
    To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P <5 x 10(-8)) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 x 10(-20)), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 x 10(-10) <P <5 x 10(-8)) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis

    Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits

    Gene co-expression analysis for functional classification and gene-disease predictions

    Get PDF
    Gene co-expression networks can be used to associate genes of unknown function with biological processes, to prioritize candidate disease genes or to discern transcriptional regulatory programmes. With recent advances in transcriptomics and next-generation sequencing, co-expression networks constructed from RNA sequencing data also enable the inference of functions and disease associations for non-coding genes and splice variants. Although gene co-expression networks typically do not provide information about causality, emerging methods for differential co-expression analysis are enabling the identification of regulatory genes underlying various phenotypes. Here, we introduce and guide researchers through a (differential) co-expression analysis. We provide an overview of methods and tools used to create and analyse co-expression networks constructed from gene expression data, and we explain how these can be used to identify genes with a regulatory role in disease. Furthermore, we discuss the integration of other data types with co-expression networks and offer future perspectives of co-expression analysis

    Optimizing bone morphogenic protein 4-mediated human embryonic stem cell differentiation into trophoblast-like cells using fibroblast growth factor 2 and transforming growth factor-beta/activin/nodal signalling inhibition

    Get PDF
    Several studies have demonstrated that human embryonic stem cells [hESC] can be differentiated into trophoblast-like cells if exposed to bone morphogenic protein 4 [BMP4] and/or inhibitors of fibroblast growth factor 2 [FGF2] and the transforming growth factor beta [TGF-beta]/activin/nodal signalling pathways. The goal of this study was to investigate how the inhibitors of these pathways improve the efficiency of hESC differentiation when compared with basic BMP4 treatment. RNA sequencing was used to analyse the effects of all possible inhibitor combinations on the differentiation of hESC into trophoblast-like cells over 12 days. Genes differentially expressed compared with untreated cells were identified at seven time points. Additionally, expression of total human chorionic gonadotrophin [HCG] and its hyperglycosylated form [HCG-H] were determined by immunoassay from cell culture media. We showed that FGF2 inhibition with BMP4 activation up-regulates syncytiotrophoblast-specific genes [CGA, CGB and LGALS16], induces several molecular pathways involved in embryo implantation and triggers HCG-H production. In contrast, inhibition of the TGF-beta/activin/nodal pathway decreases the ability of hESC to form trophoblast-like cells. Information about the conditions needed for hESC differentiation toward trophoblast-like cells helps us to find an optimal model for studying the early development of human trophoblasts in normal and in complicated pregnancy. (C) 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Genetic regulation of spermine oxidase activity and cancer risk : a Mendelian randomization study

    Get PDF
    Spermine oxidase (SMOX) catalyzes the oxidation of spermine to spermidine. Observational studies have reported SMOX as a source of reactive oxygen species associated with cancer, implying that inhibition of SMOX could be a target for chemoprevention. Here we test causality of SMOX levels with cancer risk using a Mendelian randomization analysis. We performed a GWAS of spermidine/spermine ratio to identify genetic variants associated with regulation of SMOX activity. Replication analysis was performed in two datasets of SMOX gene expression. We then did a Mendelian randomization analysis by testing the association between the SMOX genetic instrument and neuroblastoma, gastric, lung, breast, prostate, and colorectal cancers using GWAS summary statistics. GWAS of spermidine/spermine ratio identified SMOX locus (P = 1.34 x 10(-49)) explaining 32% of the variance. The lead SNP rs1741315 was also associated with SMOX gene expression in newborns (P = 8.48 x 10(-28)) and adults (P = 2.748 x 10(-8)) explaining 37% and 6% of the variance, respectively. Genetically determined SMOX activity was not associated with neuroblastoma, gastric, lung, breast, prostate nor colorectal cancer (P > 0.05). A PheWAS of rs1741315 did not reveal any relevant associations. Common genetic variation in the SMOX gene was strongly associated with SMOX activity in newborns, and less strongly in adults. Genetic down-regulation of SMOX was not significantly associated with lower odds of neuroblastoma, gastric, lung, breast, prostate and colorectal cancer. These results may inform studies of SMOX inhibition as a target for chemoprevention.Peer reviewe

    GWAS meta-analyses clarify the genetics of cervical phenotypes and inform risk stratification for cervical cancer

    No full text
    Genome-wide association studies (GWAS) have successfully identified associations for cervical cancer, but the underlying mechanisms of cervical biology and pathology remain uncharacterised. Our GWAS meta-analyses fill this gap, as we characterise the genetic architecture of cervical phenotypes, including cervical ectropion, cervicitis, cervical dysplasia, as well as up to 9229 cases and 490 304 controls for cervical cancer from diverse ancestries. Leveraging the latest computational methods and gene expression data, we refine the association signals for cervical cancer and propose potential causal variants and genes at each locus. We prioritise PAX8/PAX8-AS1, LINC00339, CDC42, CLPTM1L, HLA-DRB1 and GSDMB as the most likely candidate genes for cervical cancer signals, providing insights into cervical cancer pathogenesis and supporting the involvement of reproductive tract development, immune response and cellular proliferation/apoptosis. We construct a genetic risk score (GRS) that is associated with cervical cancer [hazard ratios (HR) = 3.1 (1.7-5.6) for the top 15% vs lowest 15% of individuals], and with other HPV- and immune-system-related diagnoses in a phenome-wide association study analysis. Our results propose valuable leads for further functional studies and present a GRS for cervical cancer that allows additional risk stratification and could potentially be used to personalise the conventional screening strategies for groups more susceptible to cervical cancer.Peer reviewe

    Comprehensive Multiple eQTL Detection and Its Application to GWAS Interpretation

    Get PDF
    Expression QTL (eQTL) detection has emerged as an important tool for unraveling the relationship between genetic risk factors and disease or clinical phenotypes. Most studies are predicated on the assumption that only a single causal variant explains the association signal in each interval. This greatly simplifies the statistical modeling, but is liable to biases in scenarios where multiple local causal-variants are responsible. Here, our primary goal was to address the prevalence of secondary cis-eQTL signals regulating peripheral blood gene expression locally, utilizing two large human cohort studies, each >2500 samples with accompanying whole genome genotypes. The CAGE (Consortium for the Architecture of Gene Expression) dataset is a compendium of Illumina microarray studies, and the Framingham Heart Study is a two-generation Affymetrix dataset. We also describe Bayesian colocalization analysis of the extent of sharing of cis-eQTL detected in both studies as well as with the BIOS RNAseq dataset. Stepwise conditional modeling demonstrates that multiple eQTL signals are present for similar to 40% of over 3500 eGenes in both microarray datasets, and that the number of loci with additional signals reduces by approximately two-thirds with each conditioning step. Althoug
    corecore