829 research outputs found

    New class I methanol masers

    Full text link
    We review properties of all known collisionally pumped (class I) methanol maser series based on observations with the Australia Telescope Compact Array (ATCA) and the Mopra radio telescope. Masers at 36, 84, 44 and 95 GHz are most widespread, while 9.9, 25, 23.4 and 104 GHz masers are much rarer, tracing the most energetic shocks. A survey of many southern masers at 36 and 44 GHz suggests that these two transitions are highly complementary. The 23.4 GHz maser is a new type of rare class I methanol maser, detected only in two high-mass star-forming regions, G357.97-0.16 and G343.12-0.06, and showing a behaviour similar to 9.9, 25 and 104 GHz masers. Interferometric positions suggest that shocks responsible for class I masers could arise from a range of phenomena, not merely an outflow scenario. For example, some masers might be caused by interaction of an expanding HII region with its surrounding molecular cloud. This has implications for evolutionary sequences incorporating class I methanol masers if they appear more than once during the evolution of the star-forming region. We also make predictions for candidate maser transitions at the ALMA frequency range.Comment: 8 pages, 2 figures, to appear in proceedings for IAUS 287: Cosmic Masers - from OH to H

    High-velocity feature of the class I methanol maser in G309.38-0.13

    Full text link
    The Australia Telescope Compact Array (ATCA) has been used to map class I methanol masers at 36 and 44 GHz in G309.38-0.13. Maser spots are found at nine locations in an area of 50''x30'', with both transitions reliably detected at only two locations. The brightest spot is associated with shocked gas traced by 4.5 micron emission. The data allowed us to make a serendipitous discovery of a high-velocity 36-GHz spectral feature, which is blue-shifted by about 30 km/s from the peak velocity at this frequency, but spatially located close to (within a few arcseconds of) the brightest maser spot. We interpret this as indicating an outflow parallel to the line of sight. Such a high velocity spread of maser features, which has not been previously reported in the class I methanol masers associated with a single molecular cloud, suggests that the outflow most likely interacts with a moving parcel of gas.Comment: 6 pages, 2 figures, accepted by MNRAS Letter

    Discovery of the new class I methanol maser transition at 23.4 GHz

    Full text link
    We report the first detection of a methanol maser in the 10(1)-9(2)A- transition at 23.4 GHz, discovered during the H2O southern Galactic Plane Survey (HOPS) with the 22-m Mopra radio telescope. In the region covered by HOPS, the 23.4 GHz maser was found at only one location, G357.97-0.16, which was also a prominent source of maser emission in the J(2)-J(1)E series near 25 GHz. The Australia Telescope Compact Array (ATCA) was used to follow up these detections at high angular resolution and prove the maser nature of the observed emission. The analysis shows that the new methanol maser at 23.4 GHz is a class I maser, which has properties similar to the 9.9 and 25 GHz masers (i.e. traces strong shocks with higher than average temperature and density). All class I masers were found to originate at the same spatial location (within the measurement uncertainty of 0.5 arcseconds) in the vicinity of the dominant infrared source, but at a clearly distinct position from nearby OH, H2O and class II methanol masers at 6.7 GHz. All maser species are distributed approximately on a line, but it is not clear at present whether this has any physical significance. We also detected a weak (1.3 mJy) continuum source at 25 GHz near the OH maser (at the most northern site, associated with a class II methanol maser and an H2O maser renowned for its extremely wide spread of velocity components). The continuum source has not been reported at lower frequencies and is therefore a candidate hypercompact HII region. We also used the ATCA to find the strongest and only fifth known 9.9 GHz maser towards G357.97-0.16 and another 23.4 GHz maser towards G343.12-0.06 not seen in HOPS.Comment: 7 pages, 2 figures, 2 tables, accepted by MNRA

    Frontiers, challenges, and solutions in modeling of swift heavy ion effects in materials

    Get PDF
    Since a few breakthroughs in the fundamental understanding of the effects of swift heavy ions (SHI) decelerating in the electronic stopping regime in the matter have been achieved in the last decade, it motivated us to review the state-of-the-art approaches in the modeling of SHI effects. The SHI track kinetics occurs via several well-separated stages: from attoseconds in ion-impact ionization depositing energy in a target, to femtoseconds of electron transport and hole cascades, to picoseconds of lattice excitation and response, to nanoseconds of atomic relaxation, and even longer macroscopic reaction. Each stage requires its own approaches for quantitative description. We discuss that understanding the links between the stages makes it possible to describe the entire track kinetics within a multiscale model without fitting procedures. The review focuses on the underlying physical mechanisms of each process, the dominant effects they produce, and the limitations of the existing approaches as well as various numerical techniques implementing these models. It provides an overview of ab-initio-based modeling of the evolution of the electronic properties; Monte Carlo simulations of nonequilibrium electronic transport; molecular dynamics modeling of atomic reaction on the surface and in the bulk; kinetic Mote Carlo of atomic defect kinetics; finite-difference methods of tracks interaction with chemical solvents describing etching kinetics. We outline the modern methods that couple these approaches into multiscale multidisciplinary models and point to their bottlenecks, strengths, and weaknesses. The analysis is accompanied by examples of important results improving the understanding of track formation in various materials. Summarizing the most recent advances in the field of the track formation process, the review delivers a comprehensive picture and detailed understanding of the phenomena.Comment: to be submitte

    Second-layer nucleation in coherent Stranski-Krastanov growth of quantum dots

    Full text link
    We have studied the monolayer-bilayer transformation in the case of the coherent Stranski-Krastanov growth. We have found that the energy of formation of a second layer nucleus is largest at the center of the first-layer island and smallest on its corners. Thus nucleation is expected to take place at the corners (or the edges) rather than at the center of the islands as in the case of homoepitaxy. The critical nuclei have one atom in addition to a compact shape, which is either a square of i*i or a rectangle of i*(i-1) atoms, with i>1 an integer. When the edge of the initial monolayer island is much larger than the critical nucleus size, the latter is always a rectangle plus an additional atom, adsorbed at the longer edge, which gives rise to a new atomic row in order to transform the rectangle into the equilibrium square shape.Comment: 6 pages, 4 figures. Accepted version, minor change

    PKSB1740-517: An ALMA view of the cold gas feeding a distant interacting young radio galaxy

    Get PDF
    Cold neutral gas is a key ingredient for growing the stellar and central black hole mass in galaxies throughout cosmic history. We have used the Atacama Large Millimetre Array (ALMA) to detect a rare example of redshifted 12^{12}CO(2-1) absorption in PKS B1740-517, a young (t1.6×103t \sim 1.6 \times 10^{3} yr) and luminous (L5GHz6.6×1043L_{\rm 5 GHz} \sim 6.6 \times 10^{43} erg s1^{-1} ) radio galaxy at z=0.44z = 0.44 that is undergoing a tidal interaction with at least one lower-mass companion. The coincident HI 21-cm and molecular absorption have very similar line profiles and reveal a reservoir of cold gas (Mgas107108M_{\rm gas} \sim 10^{7} - 10^{8} M_{\odot}), likely distributed in a disc or ring within a few kiloparsecs of the nucleus. A separate HI component is kinematically distinct and has a very narrow line width (ΔvFWHM5\Delta{v}_{\rm FWHM} \lesssim 5 km s1^{-1}), consistent with a single diffuse cloud of cold (Tk100T_{\rm k} \sim 100 K) atomic gas. The 12^{12}CO(2-1) absorption is not associated with this component, which suggests that the cloud is either much smaller than 100 pc along our sight-line and/or located in low-metallicity gas that was possibly tidally stripped from the companion. We argue that the gas reservoir in PKS B1740-517 may have accreted onto the host galaxy \sim50 Myr before the young radio AGN was triggered, but has only recently reached the nucleus. This is consistent with the paradigm that powerful luminous radio galaxies are triggered by minor mergers and interactions with low-mass satellites and represent a brief, possibly recurrent, active phase in the life cycle of massive early type galaxies.Comment: 15 pages, 7 figures, accepted for publication in MNRA

    The effect of oxide precipitates on minority carrier lifetime in n-type silicon

    Get PDF
    Supersaturated levels of interstitial oxygen in Czochralski silicon can lead to the formation of oxide precipitates. Although beneficial from an internal gettering perspective, oxygen-related extended defects give rise to recombination which reduces minority carrier lifetime. The highest efficiency silicon solar cells are made from n-type substrates in which oxide precipitates can have a detrimental impact on cell efficiency. In order to quantify and to understand the mechanism of recombination in such materials, we correlate injection level-dependent minority carrier lifetime data measured with silicon nitride surface passivation with interstitial oxygen loss and precipitate concentration measurements in samples processed under substantially different conditions. We account for surface recombination, doping level, and precipitate morphology to present a generalised parameterisation of lifetime. The lifetime data are analysed in terms of recombination activity which is dependent on precipitate density or on the surface area of different morphologies of precipitates. Correlation of the lifetime data with interstitial oxygen loss data shows that the recombination activity is likely to be dependent on the precipitate surface area. We generalise our findings to estimate the impact of oxide precipitates with a given surface area on lifetime in both n-type and p-type silicon

    The Performance and Calibration of the CRAFT Fly's Eye Fast Radio Burst Survey

    Full text link
    Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in fly's eye mode. This is the first extensive astronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and total exposure of this survey, using the pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e.\ Vela) as calibrators. The design of the survey allows us to benchmark effects due to PAF beamshape, antenna-dependent system noise, radio-frequency interference, and fluctuations during commissioning on timescales from one hour to a year. Observation time, solid-angle, and search efficiency are calculated as a function of FRB fluence threshold. Using this metric, effective survey exposures and sensitivities are calculated as a function of the source counts distribution. The implied FRB rate is significantly lower than the 3737\,sky1^{-1}\,day1^{-1} calculated using nominal exposures and sensitivities for this same sample by \citet{craft_nature}. At the Euclidean power-law index of 1.5-1.5, the rate is 10.71.8+2.7(sys)±3(stat)10.7_{-1.8}^{+2.7}\,{\rm (sys)} \, \pm \, 3\,{\rm (stat)}\,sky1^{-1}\,day1^{-1} above a threshold of 57±6(sys)57\pm6\,{\rm (sys)}\,Jy\,ms, while for the best-fit index for this sample of 2.1-2.1, it is 16.61.5+1.9(sys)±4.7(stat)16.6_{-1.5}^{+1.9} \,{\rm (sys)}\, \pm 4.7\,{\rm (stat)}\,sky1^{-1}\,day1^{-1} above a threshold of 41.6±1.5(sys)41.6\pm1.5\,{\rm (sys)}\,Jy\,ms. This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.Comment: 21 pages, 15 figures, 2 tables, accepted for publication in PAS

    High-velocity OH megamasers in IRAS 20100-4156: Evidence for a Supermassive Black Hole

    Full text link
    We report the discovery of new, high-velocity narrow-line components of the OH megamaser in IRAS 20100-4156. Results from the Australian Square Kilometre Array Pathfinder (ASKAP)'s Boolardy Engineering Test Array (BETA) and the Australia Telescope Compact Array (ATCA) provide two independent measurements of the OH megamaser spectrum. We found evidence for OH megamaser clumps at -409 and -562 km/s (blue-shifted) from the systemic velocity of the galaxy, in addition to the lines previously known. The presence of such high velocities in the molecular emission from IRAS 20100-4156 could be explained by a ~50 pc molecular ring enclosing an approximately 3.8 billion solar mass black hole. We also discuss two alternatives, i.e. that the narrow-line masers are dynamically coupled to the wind driven by the active galactic nucleus or they are associated with two separate galactic nuclei. The comparison between the BETA and ATCA spectra provides another scientific verification of ASKAP's BETA. Our data, combined with previous measurements of the source enabled us to study the variability of the source over a twenty-six year period. The flux density of the brightest OH maser components has reduced by more than a factor of two between 1988 and 2015, whereas a secondary narrow-line component has more than doubled in the same time. Plans for high-resolution VLBI follow-up of this source are discussed, as are prospects for discovering new OH megamasers during the ASKAP early science program.Comment: Accepted to MNRAS. Seven pages, three figure
    corecore