105 research outputs found

    What is the initiation step of the Grubbs-Hoveyda olefin metathesis catalyst?

    Get PDF
    Density function theory calculations reveal that the Grubbs-Hoveyda olefin metathesis pre-catalyst is activated by the formation of a complex in which the incoming alkene substrate and outgoing alkoxy ligand are both clearly associated with the ruthenium centre. The computed energies for reaction are in good agreement with the experimental values, reported here

    Toward a simulation approach for alkene ring-closing metathesis : scope and limitations of a model for RCM

    Get PDF
    A published model for revealing solvent effects on the ring-closing metathesis (RCM) reaction of di-Et diallylmalonate 7 has been evaluated over a wider range of conditions, to assess its suitability for new applications. Unfortunately, the model is too flexible and the published rate consts. do not agree with exptl. studies in the literature. However, by fixing the values of important rate consts. and restricting the concn. ranges studied, useful conclusions can be drawn about the relative rates of RCM of different substrates, precatalyst concn. can be simulated accurately and the effect of precatalyst loading can be anticipated. Progress has also been made toward applying the model to precatalyst evaluation, but further modifications to the model are necessary to achieve much broader aims

    Scope and Mechanistic Study of the Coupling Reaction of α,β-Unsaturated Carbonyl Compounds with Alkenes: Uncovering Electronic Effects on Alkene Insertion vs Oxidative Coupling Pathways

    Get PDF
    The cationic ruthenium-hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4– (1) was found to be a highly effective catalyst for the intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds to give (Z)-selective tetrasubstituted olefin products. The analogous coupling reaction of cinnamides with electron-deficient olefins led to the oxidative coupling of two olefinic C–H bonds in forming (E)-selective diene products. The intramolecular version of the coupling reaction efficiently produced indene and bicyclic fulvene derivatives. The empirical rate law for the coupling reaction of ethyl cinnamate with propene was determined as follows: rate = k[1]1[propene]0[cinnamate]−1. A negligible deuterium kinetic isotope effect (kH/kD = 1.1 ± 0.1) was measured from both (E)-C6H5CH═C(CH3)CONHCH3 and (E)-C6H5CD═C(CH3)CONHCH3 with styrene. In contrast, a significant normal isotope effect (kH/kD = 1.7 ± 0.1) was observed from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene and styrene-d8. A pronounced carbon isotope effect was measured from the coupling reaction of (E)-C6H5CH═CHCO2Et with propene (13C(recovered)/13C(virgin) at Cβ = 1.019(6)), while a negligible carbon isotope effect (13C(recovered)/13C(virgin) at Cβ = 0.999(4)) was obtained from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene. Hammett plots from the correlation of para-substituted p-X-C6H4CH═CHCO2Et (X = OCH3, CH3, H, F, Cl, CO2Me, CF3) with propene and from the treatment of (E)-C6H5CH═CHCO2Et with a series of para-substituted styrenes p-Y-C6H4CH═CH2 (Y = OCH3, CH3, H, F, Cl, CF3) gave the positive slopes for both cases (ρ = +1.1 ± 0.1 and +1.5 ± 0.1, respectively). Eyring analysis of the coupling reaction led to the thermodynamic parameters, ΔH⧧ = 20 ± 2 kcal mol–1 and ΔS⧧ = −42 ± 5 eu. Two separate mechanistic pathways for the coupling reaction have been proposed on the basis of these kinetic and spectroscopic studies

    The influence of structure on reactivity in alkene metathesis

    Get PDF
    Abstract Alkene metathesis has grown from a niche technique to a common component of the synthetic organic chemistry toolbox, driven in part by the development of more active catalyst systems, or those optimized for particular purposes. While the range of synthetic chemistry achieved has been exciting, the effects of structure on reactivity have not always been particularly clear, and rarely quantified. Understanding these relationships is important when designing new catalysts, reactions, and syntheses. Here, we examine what is known about the effect of structure on reactivity from two perspectives: the catalyst, and the substrate. The initiation of the precatalyst determines the rate at which active catalyst enters the catalytic cycle; the rate and selectivity of the alkene metathesis reaction is dependent on how the substrate and active catalyst interact. The tools deployed in modern studies of mechanism and structure/activity relationships in alkene metathesis are discussed

    Olefinmetathese - Synthese und Mechanismus von Ruthenium-NHC-Komplexen

    Get PDF
    Die Olefinmetathese ist in der organischen Chemie zu einer sehr wertvollen Methode zur Knüpfung neuer C=C-Doppelbindung geworden. Die wohl bekanntesten Katalysatoren sind die sogenannten Grubbs-Komplexe, die Ruthenium-Komplexe mit einem Carbenligand darstellen. Im Besonderen die Ringschlussmetathese (RCM) von sterisch anspruchsvollen Substraten ist eine Herausforderung für moderne Ruthenium-Katalysatoren. Normalerweise benötigt man hohe Katalysatorbeladungen und hohe Temperaturen, um vierfachsubstituierte Doppelbindungen zu erhalten. In der vorliegenden Arbeit wird ein neuartiger Ruthenium Bis-NHC-Komplex vorgestellt, der besonders temperaturstabil ist. Diese hohe Stabilität macht den Komplex zu einem sehr effektiven Katalysator in der RCM sterisch anspruchsvoller Substrate. Auf diese Weise lässt sich hoher Umsatz für viele verschiedene Substrate bei kleiner Katalysatorbeladung und hoher Temperatur (80°C in Toluol) erreichen. Der neue Komplex stellt damit im Vergleich zu bestehenden Katalysatorsystemen eine große Verbesserung in der RCM sterisch anspruchsvoller Substrate dar. In einem zweiten Teil der Arbeit wurde der Mechanismus der Initiierung von Grubbs-Hoveyda-Komplexen während der RCM mittels UV/VIS- und Fluoreszenz-Spektroskopie untersucht. Als Ergebnis dieser Untersuchungen konnte ein erweiterter Mechanismus für die Initiierung vorgeschlagen werden. Insbesondere die Untersuchung per in situ UV/VIS-Spektroskopie erlaubt dabei völlig neue Einblicke in den Mechanismus der Olefinmetathese während der Katalyse
    corecore