20 research outputs found

    Influence of Sociodemographic, Premorbid, and Injury-Related Factors on Post-Concussion Symptoms after Traumatic Brain Injury

    Get PDF
    Background: Post-concussion symptoms (PCS) are often reported as consequences of mild and moderate traumatic brain injury (TBI), but these symptoms are not well documented in severe TBI. There is a lack of agreement as to which factors and covariates affect the occurrence, frequency, and intensity of PCS among TBI severity groups. The present study therefore aims to examine the association between sociodemographic, premorbid, and injury-related factors and PCS. Methods: A total of 1391 individuals (65% male) from the CENTER-TBI study were included in the analyses. The occurrence, frequency (number of PCS), and intensity (severity) of PCS were assessed using the Rivermead Post-concussion Symptoms Questionnaire (RPQ) at six months after TBI. To examine the association between selected factors (age, sex, living situation, employment status, educational background, injury and TBI severity, and premorbid problems) and PCS, a zero-inflated negative binomial model (ZINB) for occurrence and frequency of PCS and a standard negative binomial regression (NB) for intensity were applied. Results: Of the total sample, 72% of individuals after TBI reported suffering from some form of PCS, with fatigue being the most frequent among all TBI severity groups, followed by forgetfulness, and poor concentration. Different factors contributed to the probability of occurrence, frequency, and intensity of PCS. While the occurrence of PCS seemed to be independent of the age and sex of the individuals, both the frequency and intensity of PCS are associated with them. Both injury and TBI severity influence the occurrence and frequency of PCS, but are associated less with its intensity (except "acute" symptoms such as nausea, vomiting, and headaches). Analyses focusing on the mTBI subgroup only yielded results comparable to those of the total sample. Discussion: In line with previous studies, the results support a multifactorial etiology of PCS and show the importance of differentiating between their occurrence, frequency, and intensity to better provide appropriate treatment for individual subgroups with different symptoms (e.g., multiple PCS or more intense PCS). Although PCS often occur in mild to moderate TBI, individuals after severe TBI also suffer from PCS or post-concussion-like symptoms that require appropriate treatment. The chosen statistical approaches (i.e., ZINB and NB models) permit an ameliorated differentiation between outcomes (occurrence, frequency, and intensity of PCS) and should be used more widely in TBI research

    Reference Values of the QOLIBRI from General Population Samples in the United Kingdom and The Netherlands

    Get PDF
    The Quality of Life after Traumatic Brain Injury (QOLIBRI) instrument is an internationally validated patient-reported outcome measure for assessing disease-specific health-related quality of life (HRQoL) in individuals after traumatic brain injury (TBI). However, no reference values for general populations are available yet for use in clinical practice and research in the field of TBI. The aim of the present study was, therefore, to establish these reference values for the United Kingdom (UK) and the Netherlands (NL). For this purpose, an online survey with a reworded version of the QOLIBRI for general populations was used to collect data on 4403 individuals in the UK and 3399 in the NL. This QOLIBRI version was validated by inspecting descriptive statistics, psychometric criteria, and comparability of the translations to the original version. In particular, measurement invariance (MI) was tested to examine whether the items of the instrument were understood in the same way by different individuals in the general population samples and in the TBI sample across the two countries, which is necessary in order to establish reference values. In the general population samples, the reworded QOLIBRI displayed good psychometric properties, including MI across countries and in the non-TBI and TBI samples. Therefore, differences in the QOLIBRI scores can be attributed to real differences in HRQoL. Individuals with and without a chronic health condition did differ significantly, with the latter reporting lower HRQoL. In conclusion, we provided reference values for healthy individuals and individuals with at least one chronic condition from general population samples in the UK and the NL. These can be used in the interpretation of disease-specific HRQoL assessments after TBI applying the QOLIBRI on the individual level in clinical as well as research contexts

    Post-Concussion Symptoms in Complicated vs. Uncomplicated Mild Traumatic Brain Injury Patients at Three and Six Months Post-Injury: Results from the CENTER-TBI Study

    Get PDF
    The aim of this study was to assess the occurrence of post-concussion symptoms and post-concussion syndrome (PCS) in a large cohort of patients after complicated and uncomplicated mild traumatic brain injury (mTBI) at three and six months post-injury. Patients were included through the prospective cohort study: Collaborative European NeuroTrauma Effectiveness Research (CENTER-TBI). Patients enrolled with mTBI (Glasgow Coma Scale 13–15) were further differentiated into complicated and uncomplicated mTBI based on the presence or absence of computed tomography abnormalities, respectively. The Rivermead Post-Concussion Symptoms Questionnaire (RPQ) assessed post-concussion symptoms and PCS according to the mapped ICD-10 classification method. The occurrence of post-concussion symptoms and syndrome at both time points was calculated. Chi square tests were used to test for differences between and within groups. Logistic regression was performed to analyse the association between complicated versus uncomplicated mTBI and the prevalence of PCS. Patients after complicated mTBI reported slightly more post-concussion symptoms compared to those after uncomplicated mTBI. A higher percentage of patients after complicated mTBI were classified as having PCS at three (complicated: 46% vs. uncomplicated: 35%) and six months (complicated: 43% vs. uncomplicated 34%). After adjusting for baseline covariates, the effect of complicated versus uncomplicated mTBI at three months appeared minimal: odds ratio 1.25 (95% confidence interval: 0.95–1.66). Although patients after complicated mTBI report slightly more post-concussion symptoms and show higher PCS rates compared to those after uncomplicated mTBI at three and six months, complicated mTBI was only found a weak indicator for these problems.</p

    Prediction of Global Functional Outcome and Post-Concussive Symptoms after Mild Traumatic Brain Injury: External Validation of Prognostic Models in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study

    Get PDF
    The majority of traumatic brain injuries (TBIs) are categorized as mild, according to a baseline Glasgow Coma Scale (GCS) score of 13-15. Prognostic models that were developed to predict functional outcome and persistent post-concussive symptoms (PPCS) after mild TBI have rarely been externally validated. We aimed to externally validate models predicting 3-12-month Glasgow Outcome Scale Extended (GOSE) or PPCS in adults with mild TBI. We analyzed data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) project, which included 2862 adults with mild TBI, with 6-month GOSE available for 2374 and Rivermead Post-Concussion Symptoms Questionnaire (RPQ) results available for 1605 participants. Model performance was evaluated based on calibration (graphically and characterized by slope and intercept) and discrimination (C-index). We validated five published models for 6-month GOSE and three for 6-month PPCS scores. The models used different cutoffs for outcome and some included symptoms measured 2 weeks post-injury. Discriminative ability varied substantially (C-index between 0.58 and 0.79). The models developed in the Corticosteroid Randomisation After Significant Head Injury (CRASH) trial for prediction of GOSE </p

    The burden of traumatic brain injury from low-energy falls among patients from 18 countries in the CENTER-TBI Registry: A comparative cohort study.

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) is an important global public health burden, where those injured by high-energy transfer (e.g., road traffic collisions) are assumed to have more severe injury and are prioritised by emergency medical service trauma triage tools. However recent studies suggest an increasing TBI disease burden in older people injured through low-energy falls. We aimed to assess the prevalence of low-energy falls among patients presenting to hospital with TBI, and to compare their characteristics, care pathways, and outcomes to TBI caused by high-energy trauma. METHODS AND FINDINGS: We conducted a comparative cohort study utilising the CENTER-TBI (Collaborative European NeuroTrauma Effectiveness Research in TBI) Registry, which recorded patient demographics, injury, care pathway, and acute care outcome data in 56 acute trauma receiving hospitals across 18 countries (17 countries in Europe and Israel). Patients presenting with TBI and indications for computed tomography (CT) brain scan between 2014 to 2018 were purposively sampled. The main study outcomes were (i) the prevalence of low-energy falls causing TBI within the overall cohort and (ii) comparisons of TBI patients injured by low-energy falls to TBI patients injured by high-energy transfer-in terms of demographic and injury characteristics, care pathways, and hospital mortality. In total, 22,782 eligible patients were enrolled, and study outcomes were analysed for 21,681 TBI patients with known injury mechanism; 40% (95% CI 39% to 41%) (8,622/21,681) of patients with TBI were injured by low-energy falls. Compared to 13,059 patients injured by high-energy transfer (HE cohort), the those injured through low-energy falls (LE cohort) were older (LE cohort, median 74 [IQR 56 to 84] years, versus HE cohort, median 42 [IQR 25 to 60] years; p < 0.001), more often female (LE cohort, 50% [95% CI 48% to 51%], versus HE cohort, 32% [95% CI 31% to 34%]; p < 0.001), more frequently taking pre-injury anticoagulants or/and platelet aggregation inhibitors (LE cohort, 44% [95% CI 42% to 45%], versus HE cohort, 13% [95% CI 11% to 14%]; p < 0.001), and less often presenting with moderately or severely impaired conscious level (LE cohort, 7.8% [95% CI 5.6% to 9.8%], versus HE cohort, 10% [95% CI 8.7% to 12%]; p < 0.001), but had similar in-hospital mortality (LE cohort, 6.3% [95% CI 4.2% to 8.3%], versus HE cohort, 7.0% [95% CI 5.3% to 8.6%]; p = 0.83). The CT brain scan traumatic abnormality rate was 3% lower in the LE cohort (LE cohort, 29% [95% CI 27% to 31%], versus HE cohort, 32% [95% CI 31% to 34%]; p < 0.001); individuals in the LE cohort were 50% less likely to receive critical care (LE cohort, 12% [95% CI 9.5% to 13%], versus HE cohort, 24% [95% CI 23% to 26%]; p < 0.001) or emergency interventions (LE cohort, 7.5% [95% CI 5.4% to 9.5%], versus HE cohort, 13% [95% CI 12% to 15%]; p < 0.001) than patients injured by high-energy transfer. The purposive sampling strategy and censorship of patient outcomes beyond hospital discharge are the main study limitations. CONCLUSIONS: We observed that patients sustaining TBI from low-energy falls are an important component of the TBI disease burden and a distinct demographic cohort; further, our findings suggest that energy transfer may not predict intracranial injury or acute care mortality in patients with TBI presenting to hospital. This suggests that factors beyond energy transfer level may be more relevant to prehospital and emergency department TBI triage in older people. A specific focus to improve prevention and care for patients sustaining TBI from low-energy falls is required.CENTER-TBI was supported by the European Union 7th Framework program (EC grant 602150), recipient A.I.R. Maas. Additional funding was obtained from the Hannelore Kohl Stiftung (Germany) - recipient A.I.R. Maas, from OneMind (USA) - recipient A.I.R. Maas and from Integra LifeSciences Corporation (USA) - recipient A.I.R. Maas. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Health-related quality of life after traumatic brain injury : deriving value sets for the QOLIBRI-OS for Italy, The Netherlands and The United Kingdom

    Get PDF
    Purpose The Quality of Life after Brain Injury overall scale (QOLIBRI-OS) measures health-related quality of life (HRQoL) after traumatic brain injury (TBI). The aim of this study was to derive value sets for the QOLIBRI-OS in three European countries, which will allow calculation of utility scores for TBI health states. Methods A QOLIBRI-OS value set was derived by using discrete choice experiments (DCEs) and visual analogue scales (VAS) in general population samples from the Netherlands, United Kingdom and Italy. A three-stage procedure was used: (1) A selection of health states, covering the entire spectrum of severity, was defined; (2) General population samples performed the health state valuation task using a web-based survey with three VAS questions and an at random selection of sixteen DCEs; (3) DCEs were analysed using a conditional logistic regression and were then anchored on the VAS data. Utility scores for QOLIBRI-OS health states were generated resulting in estimates for all potential health states. Results The questionnaire was completed by 13,623 respondents. The biggest weight increase for all attributes is seen from "slightly" to "not at all satisfied", resulting in the largest impact on HRQoL. "Not at all satisfied with how brain is working" should receive the greatest weight in utility calculations in all three countries. Conclusion By transforming the QOLIBRI-OS into utility scores, we enabled the application in economic evaluations and in summary measures of population health, which may be used to inform decision-makers on the best interventions and strategies for TBI patients.Peer reviewe

    Frequency of fatigue and its changes in the first 6 months after traumatic brain injury: results from the CENTER-TBI study

    Get PDF
    Background Fatigue is one of the most commonly reported subjective symptoms following traumatic brain injury (TBI). The aims were to assess frequency of fatigue over the first 6 months after TBI, and examine whether fatigue changes could be predicted by demographic characteristics, injury severity and comorbidities. Methods Patients with acute TBI admitted to 65 trauma centers were enrolled in the study Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI). Subjective fatigue was measured by single item on the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), administered at baseline, three and 6 months postinjury. Patients were categorized by clinical care pathway: admitted to an emergency room (ER), a ward (ADM) or an intensive care unit (ICU). Injury severity, preinjury somatic- and psychiatric conditions, depressive and sleep problems were registered at baseline. For prediction of fatigue changes, descriptive statistics and mixed effect logistic regression analysis are reported. Results Fatigue was experienced by 47% of patients at baseline, 48% at 3 months and 46% at 6 months. Patients admitted to ICU had a higher probability of experiencing fatigue than those in ER and ADM strata. Females and individuals with lower age, higher education, more severe intracranial injury, preinjury somatic and psychiatric conditions, sleep disturbance and feeling depressed postinjury had a higher probability of fatigue. Conclusion A high and stable frequency of fatigue was found during the first 6 months after TBI. Specific socio-demographic factors, comorbidities and injury severity characteristics were predictors of fatigue in this study

    Correction to: Frequency of fatigue and its changes in the first 6 months after traumatic brain injury: results from the CENTER-TBI study.

    No full text
    BackgroundFatigue is one of the most commonly reported subjective symptoms following traumatic brain injury (TBI). The aims were to assess frequency of fatigue over the first 6 months after TBI, and examine whether fatigue changes could be predicted by demographic characteristics, injury severity and comorbidities.MethodsPatients with acute TBI admitted to 65 trauma centers were enrolled in the study Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI). Subjective fatigue was measured by single item on the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), administered at baseline, three and 6 months postinjury. Patients were categorized by clinical care pathway: admitted to an emergency room (ER), a ward (ADM) or an intensive care unit (ICU). Injury severity, preinjury somatic- and psychiatric conditions, depressive and sleep problems were registered at baseline. For prediction of fatigue changes, descriptive statistics and mixed effect logistic regression analysis are reported.ResultsFatigue was experienced by 47% of patients at baseline, 48% at 3 months and 46% at 6 months. Patients admitted to ICU had a higher probability of experiencing fatigue than those in ER and ADM strata. Females and individuals with lower age, higher education, more severe intracranial injury, preinjury somatic and psychiatric conditions, sleep disturbance and feeling depressed postinjury had a higher probability of fatigue.ConclusionA high and stable frequency of fatigue was found during the first 6 months after TBI. Specific socio-demographic factors, comorbidities and injury severity characteristics were predictors of fatigue in this study
    corecore