184 research outputs found

    Multiplicities of charged pions and unidentified charged hadrons from deep-inelastic scattering of muons off an isoscalar target

    Get PDF
    Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable xx, the relative virtual-photon energy yy and the relative hadron energy zz. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target (6^6LiD). They cover the kinematic domain in the photon virtuality Q2Q^2 > 1(GeV/c)2)^2, 0.004<x<0.40.004 < x < 0.4, 0.2<z<0.850.2 < z < 0.85 and 0.1<y<0.70.1 < y < 0.7. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions

    Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    Get PDF
    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q2>1 (GeV/c)2Q^2>1~({\rm GeV}/c)^2. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/cc polarised muon beam impinging on a polarised 6^6LiD target. By analysing the full range in hadron transverse momentum pTp_{\rm T}, the different pTp_{\rm T}-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δg/g\Delta g/g is evaluated at leading order in pQCD at a hard scale of μ2=Q2=3(GeV/c)2\mu^2= \langle Q^2 \rangle = 3 ({\rm GeV}/c)^2. It is determined in three intervals of the nucleon momentum fraction carried by gluons, xgx_{\rm g}, covering the range 0.04 ⁣< ⁣xg ⁣< ⁣0.280.04 \!<\! x_{ \rm g}\! <\! 0.28~ and does not exhibit a significant dependence on xgx_{\rm g}. The average over the three intervals, Δg/g=0.113±0.038(stat.)±0.036(syst.)\langle \Delta g/g \rangle = 0.113 \pm 0.038_{\rm (stat.)}\pm 0.036_{\rm (syst.)} at xg0.10\langle x_{\rm g} \rangle \approx 0.10, suggests that the gluon polarisation is positive in the measured xgx_{\rm g} range.Comment: 14 pages, 6 figure

    Multiple Determinants of Externalizing Behavior in 5-Year-Olds: A Longitudinal Model

    Get PDF
    In a community sample of 116 children, assessments of parent-child interaction, parent-child attachment, and various parental, child, and contextual characteristics at 15 and 28 months and at age 5 were used to predict externalizing behavior at age 5, as rated by parents and teachers. Hierarchical multiple regression analysis and path analysis yielded a significant longitudinal model for the prediction of age 5 externalizing behavior, with independent contributions from the following predictors: child sex, partner support reported by the caregiver, disorganized infant-parent attachment at 15 months, child anger proneness at 28 months, and one of the two parent-child interaction factors observed at 28 months, namely negative parent-child interactions. The other, i.e., a lack of effective guidance, predicted externalizing problems only in highly anger-prone children. Furthermore, mediated pathways of influence were found for the parent-child interaction at 15 months (via disorganized attachment) and parental ego-resiliency (via negative parent-child interaction at 28 months)

    Optimal deployment of components of cloud-hosted application for guaranteeing multitenancy isolation

    Get PDF
    One of the challenges of deploying multitenant cloud-hosted services that are designed to use (or be integrated with) several components is how to implement the required degree of isolation between the components when there is a change in the workload. Achieving the highest degree of isolation implies deploying a component exclusively for one tenant; which leads to high resource consumption and running cost per component. A low degree of isolation allows sharing of resources which could possibly reduce cost, but with known limitations of performance and security interference. This paper presents a model-based algorithm together with four variants of a metaheuristic that can be used with it, to provide near-optimal solutions for deploying components of a cloud-hosted application in a way that guarantees multitenancy isolation. When the workload changes, the model based algorithm solves an open multiclass QN model to determine the average number of requests that can access the components and then uses a metaheuristic to provide near-optimal solutions for deploying the components. Performance evaluation showed that the obtained solutions had low variability and percent deviation when compared to the reference/optimal solution. We also provide recommendations and best practice guidelines for deploying components in a way that guarantees the required degree of isolation

    Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

    Get PDF
    Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160 GeV/c and a (LiD)-Li-6 target. The amplitudes of the three azimuthal modulations cos phi(h), cos 2 phi(h) and sin phi(h) were obtained binning the data separately in each of the relevant kinematic variables x, z or p(T)(h), and binning in a three-dimensional grid of these three variables. The amplitudes of the cos phi(h) and cos 2 phi(h) modulations show strong kinematic dependencies both for positive and negative hadrons

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target

    Get PDF
    Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. They cover the kinematic domain View the MathML source in the photon virtuality, 0.0045 GeV/c2 in the invariant mass of the hadronic system. The results from the sum of the z -integrated K+ and K 12 multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit
    corecore