119 research outputs found

    INDEX, Volumes 15 to 27 (1987-1997)

    Get PDF

    Interactions between social learning and technological learning in electric vehicle futures

    Get PDF
    The transition to electric vehicles is an important strategy for reducing greenhouse gas emissions from passenger cars. Modelling transition pathways helps identify critical drivers and uncertainties. Global integrated assessment models (IAMs) have been used extensively to analyse climate mitigation policy. IAMs emphasise technological change processes but are largely silent on important social and behavioural dimensions to technological transitions. Here, we develop a novel conceptual framing and empirical evidence base on social learning processes relevant for vehicle adoption. We then implement this formulation of social learning in IMAGE, a widely-used global IAM. We apply this new modelling approach to analyse how technological learning and social learning interact to influence electric vehicle transition dynamics. We find that technological learning and social learning processes can be mutually reinforcing. Increased electric vehicle market shares can induce technological learning which reduces technology costs while social learning stimulates diffusion from early adopters to more risk-averse adopter groups. In this way, both types of learning process interact to stimulate each other. In the absence of social learning, however, the perceived risks of electric vehicle adoption among later adopting groups remains prohibitively high. In the absence of technological learning, electric vehicles remain relatively expensive and therefore only for early adopters an attractive choice. This first-of-its-kind model formulation of both social and technological learning is a significant contribution to improving the behavioural realism of global IAMs. Applying this new modelling approach emphasises the importance of market heterogeneity, real-world consumer decision-making, and social dynamics as well as technology parameters, to understand climate mitigation potentials

    Concise Review: Mesenchymal Stem Cells for Acute Lung Injury: Role of Paracrine Soluble Factor

    Get PDF
    Morbidity and mortality have declined only modestly in patients with clinical acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), despite extensive research into the pathophysiology. Current treatment remains primarily supportive with lung-protective ventilation and a fluid conservative strategy. Pharmacologic therapies that reduce the severity of lung injury in preclinical models have not yet been translated to effective clinical treatment options. Consequently, further research in translational therapies is needed. Cell-based therapy with mesenchymal stem cells (MSCs) is one attractive new therapeutic approach. MSCs have the capacity to secrete multiple paracrine factors that can regulate endothelial and epithelial permeability, decrease inflammation, enhance tissue repair, and inhibit bacterial growth. This review will focus on recent studies, which support the potential therapeutic use of MSCs in ALI/ARDS, with an emphasis on the role of paracrine soluble factors
    • …
    corecore