92 research outputs found
Trading Performance for Stability in Markov Decision Processes
We study the complexity of central controller synthesis problems for
finite-state Markov decision processes, where the objective is to optimize both
the expected mean-payoff performance of the system and its stability.
We argue that the basic theoretical notion of expressing the stability in
terms of the variance of the mean-payoff (called global variance in our paper)
is not always sufficient, since it ignores possible instabilities on respective
runs. For this reason we propose alernative definitions of stability, which we
call local and hybrid variance, and which express how rewards on each run
deviate from the run's own mean-payoff and from the expected mean-payoff,
respectively.
We show that a strategy ensuring both the expected mean-payoff and the
variance below given bounds requires randomization and memory, under all the
above semantics of variance. We then look at the problem of determining whether
there is a such a strategy. For the global variance, we show that the problem
is in PSPACE, and that the answer can be approximated in pseudo-polynomial
time. For the hybrid variance, the analogous decision problem is in NP, and a
polynomial-time approximating algorithm also exists. For local variance, we
show that the decision problem is in NP. Since the overall performance can be
traded for stability (and vice versa), we also present algorithms for
approximating the associated Pareto curve in all the three cases.
Finally, we study a special case of the decision problems, where we require a
given expected mean-payoff together with zero variance. Here we show that the
problems can be all solved in polynomial time.Comment: Extended version of a paper presented at LICS 201
Optimizing Local Satisfaction of Long-Run Average Objectives in Markov Decision Processes
Long-run average optimization problems for Markov decision processes (MDPs)
require constructing policies with optimal steady-state behavior, i.e., optimal
limit frequency of visits to the states. However, such policies may suffer from
local instability, i.e., the frequency of states visited in a bounded time
horizon along a run differs significantly from the limit frequency. In this
work, we propose an efficient algorithmic solution to this problem
Markov Decision Processes with Multiple Long-run Average Objectives
We study Markov decision processes (MDPs) with multiple limit-average (or
mean-payoff) functions. We consider two different objectives, namely,
expectation and satisfaction objectives. Given an MDP with k limit-average
functions, in the expectation objective the goal is to maximize the expected
limit-average value, and in the satisfaction objective the goal is to maximize
the probability of runs such that the limit-average value stays above a given
vector. We show that under the expectation objective, in contrast to the case
of one limit-average function, both randomization and memory are necessary for
strategies even for epsilon-approximation, and that finite-memory randomized
strategies are sufficient for achieving Pareto optimal values. Under the
satisfaction objective, in contrast to the case of one limit-average function,
infinite memory is necessary for strategies achieving a specific value (i.e.
randomized finite-memory strategies are not sufficient), whereas memoryless
randomized strategies are sufficient for epsilon-approximation, for all
epsilon>0. We further prove that the decision problems for both expectation and
satisfaction objectives can be solved in polynomial time and the trade-off
curve (Pareto curve) can be epsilon-approximated in time polynomial in the size
of the MDP and 1/epsilon, and exponential in the number of limit-average
functions, for all epsilon>0. Our analysis also reveals flaws in previous work
for MDPs with multiple mean-payoff functions under the expectation objective,
corrects the flaws, and allows us to obtain improved results
Prosecco DOC marketing strategies for Chinese market
Table S12. List of all genes within cluster 10. Average log2 transcriptions of individual probe sets under individual treatments are displayed as well as log2 FC of individual treatments against non-treated samples. Manufacturer annotation of individual IDs along with HarvEST annotation of individual AGIs is included. (XLSX 9 kb
The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests
Publisher Copyright: © 2022, The Author(s).Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.Peer reviewe
- …