20 research outputs found

    High-resolution seismic imaging in deep sea from a joint deep-towed/OBH reflection experiment : application to a Mass Transport Complex offshore Nigeria

    Get PDF
    International audienceWe assess the feasibility of high-resolution seismic depth imaging in deep water based on a new geophysical approach involving the joint use of a deep-towed seismic device (SYSIF) and ocean bottom hydrophones (OBHs). Source signature measurement enables signature deconvolution to be used to improve the vertical resolution and signal-to-noise ratio. The source signature was also used to precisely determine direct traveltimes that were inverted to relocate source and receiver positions. The very high accuracy of the positioning that was obtained enabled depth imaging and a stack of the OBH data to be performed. The determination of the P-wave velocity distribution was realized by the adaptation of an iterative focusing approach to the specific acquisition geometry. This innovative experiment combined with advanced processing succeeded in reaching lateral and vertical resolution (2.5 and 1 m) in accordance with the objectives of imaging fine scale structures and correlation with in situ measurements. To illustrate the technological and processing advances of the approach, we present a first application performed during the ERIG3D cruise offshore Nigeria with the seismic data acquired over NG1, a buried Mass Transport Complex (MTC) interpreted as a debris flow by conventional data. Evidence for a slide nature of a part of the MTC was provided by the high resolution of the OBH depth images. Rigid behaviour may be inferred from movement of coherent material inside the MTC and thrust structures at the base of the MTC. Furthermore, a silt layer that was disrupted during emplacement but has maintained its stratigraphic position supports a short transport distance

    A volcaniclastic deep-sea fan off La RĂ©union Island (Indian Ocean): Gradualism versus catastrophism

    No full text
    International audienceA new geophysical data set off La RĂ©union Island (western Indian Ocean) reveals a large volcaniclastic submarine fan developing in an open-ocean setting. The fan is connected to a torrential river that floods during tropical cyclones. Sediment storage at the coast is limited, suggesting that the sediments are carried directly to the basin. The fan morphology and turbidites in cores lead us to classify it as a sand-rich system mainly fed by hyperpycnal flows. In the ancient geological record, there are many examples of thick volcaniclastic successions, but studies of modern analogues have emphasized mechanisms such as debris avalanches or direct pyroclastic flow into the sea. Because the Cilaos deep-sea fan is isolated from any continental source, it provides information on architecture and noncatastrophic processes in a volcaniclastic deep-sea fan

    Studying Past Deep-ocean Circulation and the Paleoclimate Record in the Gulf of Cadiz

    Get PDF
    Deep marine currents are strongly influenced by climatic changes. They also deposit, rework, and sort sediment, and can generate kilometer-scale sedimentary bodies (drifts). These drifts are made of thoroughly bioturbated, stacked sedimentary sequences called contourites [Gonthier et al., 1984]. As a consequence, change in the direction or intensity of currents can be recorded in the sediment

    Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT

    Get PDF
    International audienceBackground: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. Methodology/Principal Findings: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200 ± 40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150 ± 80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. Conclusions: Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicit

    Etude gitologique du nord des massifs du Pelvoux et des Grandes Rousses : application de la spectrométrie de masse à étincelles à la géochimie des éléments traces des paragénèses à molybdenite

    No full text
    Ce travail étudie les indices minéralisés du nord Pelvoux. Les paragenèses à molybdénite sont l'objet d'une étude gîtologique et géochimique gr^ace au spectographe de masse à étincelles.pas de résum

    Potential role of compressional structures in generating submarine slope failures in the Niger Delta

    No full text
    International audienceThe study area, offshore Nigeria, is located in one of the compressional zones within the Niger Delta, which is characterized by imbricate thrust structures. Although the low mean slope angle (around 2°), bathymetry data from the study area have shown the existence of several submarine landslides which coincide with known subsurface faulted compressive features. In this paper, we have focused on a submarine slide occurring in water depths ranging between 1690 and 1750 m. Headwall scars, internal architecture and associated deposits have been characterized using a combination of 3D seismic data, near-bottom echosounder seismic profiles, Kullenberg cores and in-situ geotechnical measurements. The slide shows horseshoe shaped headwall scars and depositional lobes with positive relief. Monitoring of excess pore pressure for 12 months indicates the presence of negative hydraulic gradients, which is either an indication of a local present-day mechanical activity of subsurface faults or related to the regional extension of the Niger Delta and the possible creation of a regional depression in the hydraulic regime. In order to identify the triggering mechanism of the observed landslide, a three-dimensional slope stability model (SAMU-3D) based on the upper bound theorem of plasticity was used. Calculation results have shown that the gravity loading generated by the sediment weight alone is not sufficient to explain the observed submarine slide. Cylindrical cavity expansion theory was used to locally simulate the compressional structure movements and to evaluate the strength generated within the upper sediment layers. Slope stability assessment carried out by considering this additional structural strength has shown that regional compressional gravity driven deformation can explain the observed submarine failures

    Post-glacial persistence of turbiditic activity within the RhĂ´ne deep-sea turbidite system (Gulf of Lions, Western Mediterranean): Linking the outer shelf and the basin sedimentary records

    No full text
    International audienceEmplacement of post-glacial turbidites is commonly controlled by rapid changes in sea level or by seismicity. On the continental rise of the Gulf of Lions (Western Mediterranean), an aseismic area, we identified turbiditic beds deposited during the rising stage and highstand of sea level. Swath bathymetry, sediment cores, in situ Cone Penetrating Tests (CPTU), heavy mineral associations and radiocarbon dating determined the source, composition, distribution and age of the turbiditic beds. Turbidites are composed of homogeneous to positively graded silts to medium sand with quartz (up to 90%), shell debris and shelfal benthic faunas. Their distribution on the sea floor is very patchy and controlled by abundant inherited erosional bedforms. Their source is found in relict regressive sands at the outershelf. Their deposition occurred just after the onset of the post-glacial sea level rise and the concomitant sediment starvation of the RhĂ´ne deep sea turbiditic system until recently. Whilst canyons are fed with sand by strong seasonal hydro-sedimentary dynamics on the outershelf, the emplacement of post-glacial turbidites is not controlled by sea level changes but probably by the periodic flushing of the canyons. Our study revealed that this low energy aseismic margin undergoes significant transport of sand, down to the base of slope, during the sea-level rise and the Holocene highstand

    Post-glacial persistence of turbiditic activity within the RhĂ´ne deep-sea turbidite system (Gulf of Lions, Western Mediterranean): Linking the outer shelf and the basin sedimentary records

    No full text
    International audienceEmplacement of post-glacial turbidites is commonly controlled by rapid changes in sea level or by seismicity. On the continental rise of the Gulf of Lions (Western Mediterranean), an aseismic area, we identified turbiditic beds deposited during the rising stage and highstand of sea level. Swath bathymetry, sediment cores, in situ Cone Penetrating Tests (CPTU), heavy mineral associations and radiocarbon dating determined the source, composition, distribution and age of the turbiditic beds. Turbidites are composed of homogeneous to positively graded silts to medium sand with quartz (up to 90%), shell debris and shelfal benthic faunas. Their distribution on the sea floor is very patchy and controlled by abundant inherited erosional bedforms. Their source is found in relict regressive sands at the outershelf. Their deposition occurred just after the onset of the post-glacial sea level rise and the concomitant sediment starvation of the RhĂ´ne deep sea turbiditic system until recently. Whilst canyons are fed with sand by strong seasonal hydro-sedimentary dynamics on the outershelf, the emplacement of post-glacial turbidites is not controlled by sea level changes but probably by the periodic flushing of the canyons. Our study revealed that this low energy aseismic margin undergoes significant transport of sand, down to the base of slope, during the sea-level rise and the Holocene highstand

    Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria

    No full text
    A series of pockmarks observed at the seabed matches well the perimeter of a large submarine landslide, called NG1, located on the outer shelf and continental slope of the Eastern Gulf of Guinea. NG1 extends over 200 km2, is covered by a 120-m thick sedimentary layer which tapers downslope, and has an internal structure clearly identified in 3D seismic data consisting of three adjacent units on the upper continental slope. The pockmarks above NG1 have a diameter of several tens of meters and reveal distinct origins: (1) linked to >500 m deep fluid reservoirs, (2) rooted in NG1 internal discontinuities between NG1 units, and (3) well above NG1, superficially rooted in a regional conformity (D40), which marks the lowest sea level of the Marine Isotope Stage 6. The regional stratigraphic pattern of the study area is composed of muddy sedimentary sequences separated by correlative conformities and transgressive condensed units of coarser grain size. Mud-confined coarser-grained units constitute transient gas reservoirs favoring lateral gas migration and formation of pockmarks rooted in the condensed units. The buried NG1 landslide modifies the layered structure of the sedimentary column providing (1) overall, a barrier to fluid migration, and (2) localized pathways for fluid migration. The triggering factor for the formation of pockmarks above NG1 can be the variation of hydrostatic pressure driven by relative sea-level fall during Marine Isotopic Stages 6 and 2 and consequent gas exsolution and fluid flow. We anticipate our result to be a starting point for understanding the role of gas seeps on climate change worldwide. Furthermore, gas release intensifies during lowstands with relevant implication on global warming after ice ages
    corecore