161 research outputs found
ΠΠΎΠ²ΡΠΉ Π²ΡΡΠΎΠΊΠΎΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΡΠΉ ΡΡΠ°ΠΌΠΌ Propionibacterium acidipropionici FL-48 Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΉ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡΡ ΠΊ ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΠ΅ ΠΈ ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΅Π³ΠΎ Π½Π°ΡΠ°Π±ΠΎΡΠΊΠΈ Π² ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΡ Π±ΠΈΠΎΡΠ΅Π°ΠΊΡΠΎΡΠ°Ρ
Propionic acid bacteria, includingΒ Propionibacterium acidipropionici, are widely used in the chemical industry to produce propionic acid and also for food and feed preservation. However, the efficiency of the industrial production of these bacteria is limited by their sensitivity to high concentrations of propionic acid excreted into the cultivation medium. Therefore, the development of new biotechnological processes and strains able to overcome this limitation and to improve the profitability of the microbiological production remainsΒ a relevant problem. AΒ newΒ P. acidipropioniciΒ FL-48 strain characterized by an increased resistance to 10 g/L of propionic acid (the number of viable cells after 24-h cultivation reached 1.05 Γ 106) was developed by a two-step induced mutagenesis using UV and diethyl sulphate from theΒ P.Β acidipropioniciΒ VKPM B-5723 strain. The mutant strain exceeded the parental strain in the biomass accumulation rate and the amount of produced propionic and acetic acids by 35%, 20%, and 16%, respectively. The stability of such important characteristics as the biomass accumulation rate and the viability on media containing heightened concentrations of propionic acid was confirmed by three sequential monoclonal subculturings on a medium supplemented with 10 g/L of propionic acid. The optimization of the cultivation technology made it possible to determine the optimum seed inoculum dose (10% of the fermentation medium volume) and the best pH level for the active growth stage (6.1 Β± 0.1). The scaling up of the fermentation to a 100-L bioreactor under observance of optimum cultivation conditions demonstrated a high biomass growth rate with a sufficient reproducability; after 20 h of fermentation, the number of viable cells in the culture broth exceeded 1 Γ 1010Β CFU/mL. The new strain could be interesting as the component of silage and haylage biopreservatives and also could be used as an efficient producer of propionic acid.ΠΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΊΠΈΡΠ»ΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Propionibacterium acidipropionici, ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π² Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΡΡΠΈ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π»Ρ ΠΊΠΎΠ½ΡΠ΅ΡΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΈΡΠΈ ΠΈ Π·Π°Π³ΠΎΡΠΎΠ²ΠΊΠΈ Π·Π΅ΡΠ½Π° ΠΈ Π·Π΅Π»Π΅Π½ΡΡ
ΠΊΠΎΡΠΌΠΎΠ². ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° Π±ΠΈΠΎΠΌΠ°ΡΡΡ ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΊΠΈΡΠ»ΡΡ
Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π° ΠΈΡ
ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ ΠΊ Π²ΡΡΠΎΠΊΠΈΠΌ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΠΌ Π² ΡΡΠ΅Π΄Π΅ ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° Π½ΠΎΠ²ΡΡ
Π±ΠΈΠΎΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΈ ΡΡΠ°ΠΌΠΌΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΡ
ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅ΡΡ ΡΡΠΎ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΡΠ΅Π½ΡΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π°. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄Π²ΡΡ
ΡΡΡΠΏΠ΅Π½ΡΠ°ΡΠΎΠ³ΠΎ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΡΡΠ°Π³Π΅Π½Π΅Π·Π° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π£Π€-ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΈ Π΄ΠΈΡΡΠΈΠ»ΡΡΠ»ΡΡΠ°ΡΠ° ΠΏΠΎΠ»ΡΡΠ΅Π½ Π½ΠΎΠ²ΡΠΉ ΠΌΡΡΠ°Π½ΡΠ½ΡΠΉ ΡΡΠ°ΠΌΠΌ P. acidipropionici Π€Π-48, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠΉ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΉ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΡΡ ΠΊ 10 Π³/Π» ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠ΅ΡΠ΅Π· 24 Ρ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄ΠΎΡΡΠΈΠ³Π°Π»ΠΎ 1,05 Γ 106) ΠΈ ΠΏΡΠ΅Π²ΠΎΡΡ
ΠΎΠ΄ΡΡΠΈΠΉ ΡΠΎΠ΄ΠΈΡΠ΅Π»ΡΡΠΊΠΈΠΉ ΡΡΠ°ΠΌΠΌ P.Β acidipropionici ΠΠΠΠ Π-5723 ΠΏΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ Π±ΠΈΠΎΠΌΠ°ΡΡΡ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ ΠΏΡΠΎΠ΄ΡΡΠΈΡΡΠ΅ΠΌΡΡ
ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΈ ΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡ Π½Π° 35%, 20% ΠΈ 16%, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. Π‘ΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ°ΠΌΠΌΠ° (ΡΠΊΠΎΡΠΎΡΡΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ Π±ΠΈΠΎΠΌΠ°ΡΡΡ ΠΈ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ Π½Π° ΡΡΠ΅Π΄Π°Ρ
Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠ΅ΠΉ ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ) ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° ΡΡΠ΅Ρ
ΠΊΡΠ°ΡΠ½ΡΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΡΠΌ ΡΠ°ΡΡΠ΅Π²ΠΎΠΌ Π½Π° ΡΡΠ΅Π΄Ρ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΡΡ 10 Π³/Π» ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ. ΠΡΠΏΠΎΠ»Π½Π΅Π½Π½Π°Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΠΌΠΌΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ Π΄ΠΎΠ·Ρ ΠΈΠ½ΠΎΠΊΡΠ»ΡΠΌΠ° Π΄Π»Ρ Π·Π°ΡΠ΅Π²Π° Π±ΠΈΠΎΡΠ΅Π°ΠΊΡΠΎΡΠ° (10% ΠΎΡ ΠΎΠ±ΡΠ΅ΠΌΠ° ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ) ΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅ΠΌΡΠΉ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΡΡ
12 Ρ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠ ΡΡΠ΅Π΄Ρ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΠΈΡΠΎΡΡ Π±ΠΈΠΎΠΌΠ°ΡΡΡ (6,1 Β± 0,1). ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π΄ΠΎ 100-Π»ΠΈΡΡΠΎΠ²ΠΎΠ³ΠΎ Π±ΠΈΠΎΡΠ΅Π°ΠΊΡΠΎΡΠ° Ρ ΡΠΎΠ±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΠ΅ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΡΡΠ° ΡΡΠ°ΠΌΠΌΠ° Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ; ΡΠΆΠ΅ ΠΊ 20-ΠΌΡ ΡΠ°ΡΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ Π² ΠΊΡΠ»ΡΡΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ ΠΏΡΠ΅Π²ΡΡΠ°Π»ΠΎ 1 Γ 1010 ΠΠΠ/ΠΌΠ». ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ
ΠΎΡΠΎΡΡΡ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ. ΠΠΎΠ²ΡΠΉ ΡΡΠ°ΠΌΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° Π±ΠΈΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠΎΠ² Π΄Π»Ρ ΡΠΈΠ»ΠΎΡΠ° ΠΈ ΡΠ΅Π½Π°ΠΆΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΡΠ΅Π½ΡΠ° ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ.Β ΠΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΊΠΈΡΠ»ΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Propionibacterium acidipropionici, ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π² Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΡΡΠΈ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π»Ρ ΠΊΠΎΠ½ΡΠ΅ΡΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΈΡΠΈ ΠΈ Π·Π°Π³ΠΎΡΠΎΠ²ΠΊΠΈ Π·Π΅ΡΠ½Π° ΠΈ Π·Π΅Π»Π΅Π½ΡΡ
ΠΊΠΎΡΠΌΠΎΠ². ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° Π±ΠΈΠΎΠΌΠ°ΡΡΡ ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΊΠΈΡΠ»ΡΡ
Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π° ΠΈΡ
ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ ΠΊ Π²ΡΡΠΎΠΊΠΈΠΌ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΠΌ Π² ΡΡΠ΅Π΄Π΅ ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° Π½ΠΎΠ²ΡΡ
Π±ΠΈΠΎΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΈ ΡΡΠ°ΠΌΠΌΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΡ
ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅ΡΡ ΡΡΠΎ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΡΠ΅Π½ΡΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π°. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄Π²ΡΡ
ΡΡΡΠΏΠ΅Π½ΡΠ°ΡΠΎΠ³ΠΎ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΡΡΠ°Π³Π΅Π½Π΅Π·Π° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π£Π€-ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΈ Π΄ΠΈΡΡΠΈΠ»ΡΡΠ»ΡΡΠ°ΡΠ° ΠΏΠΎΠ»ΡΡΠ΅Π½ Π½ΠΎΠ²ΡΠΉ ΠΌΡΡΠ°Π½ΡΠ½ΡΠΉ ΡΡΠ°ΠΌΠΌ P. acidipropionici Π€Π-48, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠΉ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΉ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΡΡ ΠΊ 10 Π³/Π» ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠ΅ΡΠ΅Π· 24 Ρ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄ΠΎΡΡΠΈΠ³Π°Π»ΠΎ 1,05 Γ 106) ΠΈ ΠΏΡΠ΅Π²ΠΎΡΡ
ΠΎΠ΄ΡΡΠΈΠΉ ΡΠΎΠ΄ΠΈΡΠ΅Π»ΡΡΠΊΠΈΠΉ ΡΡΠ°ΠΌΠΌ P.Β acidipropionici ΠΠΠΠ Π-5723 ΠΏΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ Π±ΠΈΠΎΠΌΠ°ΡΡΡ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ ΠΏΡΠΎΠ΄ΡΡΠΈΡΡΠ΅ΠΌΡΡ
ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΈ ΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡ Π½Π° 35%, 20% ΠΈ 16%, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. Π‘ΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ°ΠΌΠΌΠ° (ΡΠΊΠΎΡΠΎΡΡΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ Π±ΠΈΠΎΠΌΠ°ΡΡΡ ΠΈ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ Π½Π° ΡΡΠ΅Π΄Π°Ρ
Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠ΅ΠΉ ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ) ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° ΡΡΠ΅Ρ
ΠΊΡΠ°ΡΠ½ΡΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΡΠΌ ΡΠ°ΡΡΠ΅Π²ΠΎΠΌ Π½Π° ΡΡΠ΅Π΄Ρ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΡΡ 10 Π³/Π» ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ. ΠΡΠΏΠΎΠ»Π½Π΅Π½Π½Π°Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΠΌΠΌΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ Π΄ΠΎΠ·Ρ ΠΈΠ½ΠΎΠΊΡΠ»ΡΠΌΠ° Π΄Π»Ρ Π·Π°ΡΠ΅Π²Π° Π±ΠΈΠΎΡΠ΅Π°ΠΊΡΠΎΡΠ° (10% ΠΎΡ ΠΎΠ±ΡΠ΅ΠΌΠ° ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ) ΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅ΠΌΡΠΉ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΡΡ
12 Ρ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠ ΡΡΠ΅Π΄Ρ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΠΈΡΠΎΡΡ Π±ΠΈΠΎΠΌΠ°ΡΡΡ (6,1 Β± 0,1). ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π΄ΠΎ 100-Π»ΠΈΡΡΠΎΠ²ΠΎΠ³ΠΎ Π±ΠΈΠΎΡΠ΅Π°ΠΊΡΠΎΡΠ° Ρ ΡΠΎΠ±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΠ΅ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΡΡΠ° ΡΡΠ°ΠΌΠΌΠ° Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ; ΡΠΆΠ΅ ΠΊ 20-ΠΌΡ ΡΠ°ΡΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ Π² ΠΊΡΠ»ΡΡΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ ΠΏΡΠ΅Π²ΡΡΠ°Π»ΠΎ 1 Γ 1010 ΠΠΠ/ΠΌΠ». ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ
ΠΎΡΠΎΡΡΡ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ. ΠΠΎΠ²ΡΠΉ ΡΡΠ°ΠΌΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° Π±ΠΈΠΎΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°Π½ΡΠΎΠ² Π΄Π»Ρ ΡΠΈΠ»ΠΎΡΠ° ΠΈ ΡΠ΅Π½Π°ΠΆΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΡΠ΅Π½ΡΠ° ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ.
Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering
Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs
Transesterification of PHA to Oligomers Covalently Bonded with (Bio)Active Compounds Containing Either Carboxyl or Hydroxyl Functionalities
Β© 2015 The Authors. Published by Public Library of Science. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisherβs website: https://doi.org/10.1371/journal.pone.0120149This manuscript presents the synthesis and structural characterisation of novel biodegradable polymeric controlled-release systems of pesticides with potentially higher resistance to weather conditions in comparison to conventional forms of pesticides. Two methods for the preparation of pesticide-oligomer conjugates using the transesterification reaction were developed. The first method of obtaining conjugates, which consist of bioactive compounds with the carboxyl group and polyhydroxyalkanoates (PHAs) oligomers, is "one-pot" transesterification. In the second method, conjugates of bioactive compounds with hydroxyl group and polyhydroxyalkanoates oligomers were obtained in two-step method, through cyclic poly(3-hydroxybutyrate) oligomers. The obtained pesticide-PHA conjugates were comprehensively characterised using GPC, 1H NMR and mass spectrometry techniques. The structural characterisation of the obtained products at the molecular level with the aid of mass spectrometry confirmed that both of the synthetic strategies employed led to the formation of conjugates in which selected pesticides were covalently bonded to PHA oligomers via a hydrolysable ester bond
Role of Caustic Addition in Bitumen-Clay Interactions
Coating of bitumen by clays, known as slime coating, is detrimental to bitumen recovery from oil sands using the warm slurry extn. process. Sodium hydroxide (caustic) is added to the extn. process to balance many competing processing challenges, which include undesirable slime coating. The current research aims at understanding the role of caustic addn. in controlling interactions of bitumen with various types of model clays. The interaction potential was studied by quartz crystal microbalance with dissipation monitoring (QCM-D). After confirming the slime coating potential of montmorillonite clays on bitumen in the presence of calcium ions, the interaction of kaolinite and illite with bitumen was studied. To represent more closely the industrial applications, tailings water from bitumen extn. tests at different caustic dosage was used. At caustic dosage up to 0.5 wt % oil sands ore, a negligible coating of kaolinite on the bitumen was detd. However, at a lower level of caustic addn., illite was shown to attach to the bitumen, with the interaction potential decreasing with increasing caustic dosage. Increasing concn. of humic acids as a result of increasing caustic dosage was identified to limit the interaction potential of illite with bitumen. This fundamental study clearly shows that the crit. role of caustics in modulating interactions of clays with bitumen depends upon the type of clays. Thus, clay type was identified as a key operational variable
Membrane chemical stability and seed longevity
Here, we investigate the relationships between the chemical stability of the membrane surface and seed longevity. Dry embryos of long-lived tomato and short-lived onion seeds were labeled with 5-doxyl-stearic acid (5-DS). Temperature-induced loss of the electron spin resonance signal caused by chemical conversion of 5-DS to nonparamagnetic species was used to characterize the membrane surface chemical stability. No difference was found between temperature plots of 5-DS signal intensity in dry onion and tomato below 345Β K. Above this temperature, the 5-DS signal remained unchanged in tomato embryos and irreversibly disappeared in onion seeds. The role of the physical state and chemical status of the membrane environment in the chemical stability of membrane surfaces was estimated for model systems containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) dried alone or in the presence of trehalose or glucose. Fourier transform infrared spectroscopy was used to follow temperature-induced structural changes in dry POPC. Spin-label technique was used to relate the chemical stability of 5-DS with the dynamic properties of the bilayer and 5-DS motion behavior. In all the models, the decrease in 5-DS signal intensity was always observed above Tm for the membrane surface. The 5-DS signal was irreversibly lost at high temperature when dry POPC was embedded in a glucose matrix. The loss of 5-DS signal was moderate when POPC was dried alone or in the presence of trehalose. Comparison of model and in vivo data shows that the differences in longevity between onion and tomato seeds are caused by differences in the chemical status of the membrane surface rather than the degree of its immobilization
Recommended from our members
Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the 21st century
During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can
have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science
Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to
better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed
with regional decision makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and
models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include: warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land-use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia's role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large scale water withdrawals, land use and governance change) and
potentially restrict or provide new opportunities for future human activities. Therefore, we propose that Integrated Assessment Models are needed as the final stage of global
change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts
- β¦