161 research outputs found

    Новый высокопродуктивный ΡˆΡ‚Π°ΠΌΠΌ Propionibacterium acidipropionici FL-48 с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒΡŽ ΠΊ ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислотС ΠΈ ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΅Π³ΠΎ Π½Π°Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π² ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹Ρ… Π±ΠΈΠΎΡ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°Ρ…

    Get PDF
    Propionic acid bacteria, includingΒ Propionibacterium acidipropionici, are widely used in the chemical industry to produce propionic acid and also for food and feed preservation. However, the efficiency of the industrial production of these bacteria is limited by their sensitivity to high concentrations of propionic acid excreted into the cultivation medium. Therefore, the development of new biotechnological processes and strains able to overcome this limitation and to improve the profitability of the microbiological production remainsΒ  a relevant problem. AΒ newΒ P. acidipropioniciΒ FL-48 strain characterized by an increased resistance to 10 g/L of propionic acid (the number of viable cells after 24-h cultivation reached 1.05 Γ— 106) was developed by a two-step induced mutagenesis using UV and diethyl sulphate from theΒ P.Β acidipropioniciΒ VKPM B-5723 strain. The mutant strain exceeded the parental strain in the biomass accumulation rate and the amount of produced propionic and acetic acids by 35%, 20%, and 16%, respectively. The stability of such important characteristics as the biomass accumulation rate and the viability on media containing heightened concentrations of propionic acid was confirmed by three sequential monoclonal subculturings on a medium supplemented with 10 g/L of propionic acid. The optimization of the cultivation technology made it possible to determine the optimum seed inoculum dose (10% of the fermentation medium volume) and the best pH level for the active growth stage (6.1 Β± 0.1). The scaling up of the fermentation to a 100-L bioreactor under observance of optimum cultivation conditions demonstrated a high biomass growth rate with a sufficient reproducability; after 20 h of fermentation, the number of viable cells in the culture broth exceeded 1 Γ— 1010Β CFU/mL. The new strain could be interesting as the component of silage and haylage biopreservatives and also could be used as an efficient producer of propionic acid.ΠŸΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΊΠΈΡΠ»Ρ‹Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ, Π² Ρ‚ΠΎΠΌ числС Propionibacterium acidipropionici, ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² химичСской ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ для получСния ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты, Π° Ρ‚Π°ΠΊΠΆΠ΅ для консСрвирования ΠΏΠΈΡ‰ΠΈ ΠΈ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ Π·Π΅Ρ€Π½Π° ΠΈ Π·Π΅Π»Π΅Π½Ρ‹Ρ… ΠΊΠΎΡ€ΠΌΠΎΠ². Однако ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠ³ΠΎ производства биомассы пропионовокислых Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π° ΠΈΡ… Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΊ высоким концСнтрациям Π² срСдС ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²Ρ‹Ρ… биотСхнологичСских процСссов ΠΈ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΡ… ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Ρ‚ΡŒ это ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ Ρ€Π΅Π½Ρ‚Π°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ микробиологичСского производства. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ двухступСнчатого ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·Π° с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π£Π€-облучСния ΠΈ Π΄ΠΈΡΡ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹ΠΉ ΡˆΡ‚Π°ΠΌΠΌ P. acidipropionici Π€Π›-48, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠΉ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Ρ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ 10 Π³/Π» ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты (количСство ТизнСспособных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Ρ€Π΅Π· 24 Ρ‡ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ достигало 1,05 Γ— 106) ΠΈ прСвосходящий Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΈΠΉ ΡˆΡ‚Π°ΠΌΠΌ P.Β acidipropionici Π’ΠšΠŸΠœ Π’-5723 ΠΏΠΎ скорости накоплСния биомассы ΠΈ количСству ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΈ уксусной кислот Π½Π° 35%, 20% ΠΈ 16%, соотвСтствСнно. Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ характСристик Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΠΌΠ° (ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ накоплСния биомассы ΠΈ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π½Π° срСдах с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты) ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Ρ‚Ρ€Π΅Ρ…ΠΊΡ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ рассСвом Π½Π° срСду, ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΡƒΡŽ 10 Π³/Π» ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты. ВыполнСнная оптимизация Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΡˆΡ‚Π°ΠΌΠΌΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Π΄ΠΎΠ·Ρƒ ΠΈΠ½ΠΎΠΊΡƒΠ»ΡŽΠΌΠ° для засСва Π±ΠΈΠΎΡ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° (10% ΠΎΡ‚ объСма Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ срСды) ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅ΠΌΡ‹ΠΉ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… 12 Ρ‡ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ рН срСды, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ прирост биомассы (6,1 Β± 0,1). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π΄ΠΎ 100-Π»ΠΈΡ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π±ΠΈΠΎΡ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° с соблюдСниСм ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ сохранСниС высокой скорости роста ΡˆΡ‚Π°ΠΌΠΌΠ° Π² условиях ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ рН; ΡƒΠΆΠ΅ ΠΊ 20-ΠΌΡƒ часу Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ количСство ТизнСспособных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ Тидкости ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π»ΠΎ 1 Γ— 1010 ΠšΠžΠ•/ΠΌΠ». ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΡƒΡŽ Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ. Новый ΡˆΡ‚Π°ΠΌΠΌ прСдставляСт интСрСс Π² качСствС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° биоконсСрвантов для силоса ΠΈ сСнаТа, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован Π² качСствС эффСктивного ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Π° ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты.Β ΠŸΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΊΠΈΡΠ»Ρ‹Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ, Π² Ρ‚ΠΎΠΌ числС Propionibacterium acidipropionici, ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² химичСской ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ для получСния ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты, Π° Ρ‚Π°ΠΊΠΆΠ΅ для консСрвирования ΠΏΠΈΡ‰ΠΈ ΠΈ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ Π·Π΅Ρ€Π½Π° ΠΈ Π·Π΅Π»Π΅Π½Ρ‹Ρ… ΠΊΠΎΡ€ΠΌΠΎΠ². Однако ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠ³ΠΎ производства биомассы пропионовокислых Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π° ΠΈΡ… Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΊ высоким концСнтрациям Π² срСдС ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²Ρ‹Ρ… биотСхнологичСских процСссов ΠΈ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΡ… ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Ρ‚ΡŒ это ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ Ρ€Π΅Π½Ρ‚Π°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ микробиологичСского производства. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ двухступСнчатого ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·Π° с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π£Π€-облучСния ΠΈ Π΄ΠΈΡΡ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹ΠΉ ΡˆΡ‚Π°ΠΌΠΌ P. acidipropionici Π€Π›-48, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠΉ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Ρ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ 10 Π³/Π» ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты (количСство ТизнСспособных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Ρ€Π΅Π· 24 Ρ‡ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ достигало 1,05 Γ— 106) ΠΈ прСвосходящий Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΈΠΉ ΡˆΡ‚Π°ΠΌΠΌ P.Β acidipropionici Π’ΠšΠŸΠœ Π’-5723 ΠΏΠΎ скорости накоплСния биомассы ΠΈ количСству ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΈ уксусной кислот Π½Π° 35%, 20% ΠΈ 16%, соотвСтствСнно. Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ характСристик Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΠΌΠ° (ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ накоплСния биомассы ΠΈ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π½Π° срСдах с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты) ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Ρ‚Ρ€Π΅Ρ…ΠΊΡ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ рассСвом Π½Π° срСду, ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΡƒΡŽ 10 Π³/Π» ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты. ВыполнСнная оптимизация Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΡˆΡ‚Π°ΠΌΠΌΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Π΄ΠΎΠ·Ρƒ ΠΈΠ½ΠΎΠΊΡƒΠ»ΡŽΠΌΠ° для засСва Π±ΠΈΠΎΡ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° (10% ΠΎΡ‚ объСма Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ срСды) ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅ΠΌΡ‹ΠΉ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… 12 Ρ‡ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ рН срСды, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ прирост биомассы (6,1 Β± 0,1). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π΄ΠΎ 100-Π»ΠΈΡ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π±ΠΈΠΎΡ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° с соблюдСниСм ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ сохранСниС высокой скорости роста ΡˆΡ‚Π°ΠΌΠΌΠ° Π² условиях ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ рН; ΡƒΠΆΠ΅ ΠΊ 20-ΠΌΡƒ часу Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ количСство ТизнСспособных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ Тидкости ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π»ΠΎ 1 Γ— 1010 ΠšΠžΠ•/ΠΌΠ». ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΡƒΡŽ Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ. Новый ΡˆΡ‚Π°ΠΌΠΌ прСдставляСт интСрСс Π² качСствС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° биоконсСрвантов для силоса ΠΈ сСнаТа, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован Π² качСствС эффСктивного ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Π° ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты.

    Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    Get PDF
    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs

    Transesterification of PHA to Oligomers Covalently Bonded with (Bio)Active Compounds Containing Either Carboxyl or Hydroxyl Functionalities

    Get PDF
    Β© 2015 The Authors. Published by Public Library of Science. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0120149This manuscript presents the synthesis and structural characterisation of novel biodegradable polymeric controlled-release systems of pesticides with potentially higher resistance to weather conditions in comparison to conventional forms of pesticides. Two methods for the preparation of pesticide-oligomer conjugates using the transesterification reaction were developed. The first method of obtaining conjugates, which consist of bioactive compounds with the carboxyl group and polyhydroxyalkanoates (PHAs) oligomers, is "one-pot" transesterification. In the second method, conjugates of bioactive compounds with hydroxyl group and polyhydroxyalkanoates oligomers were obtained in two-step method, through cyclic poly(3-hydroxybutyrate) oligomers. The obtained pesticide-PHA conjugates were comprehensively characterised using GPC, 1H NMR and mass spectrometry techniques. The structural characterisation of the obtained products at the molecular level with the aid of mass spectrometry confirmed that both of the synthetic strategies employed led to the formation of conjugates in which selected pesticides were covalently bonded to PHA oligomers via a hydrolysable ester bond

    Role of Caustic Addition in Bitumen-Clay Interactions

    Get PDF
    Coating of bitumen by clays, known as slime coating, is detrimental to bitumen recovery from oil sands using the warm slurry extn. process. Sodium hydroxide (caustic) is added to the extn. process to balance many competing processing challenges, which include undesirable slime coating. The current research aims at understanding the role of caustic addn. in controlling interactions of bitumen with various types of model clays. The interaction potential was studied by quartz crystal microbalance with dissipation monitoring (QCM-D). After confirming the slime coating potential of montmorillonite clays on bitumen in the presence of calcium ions, the interaction of kaolinite and illite with bitumen was studied. To represent more closely the industrial applications, tailings water from bitumen extn. tests at different caustic dosage was used. At caustic dosage up to 0.5 wt % oil sands ore, a negligible coating of kaolinite on the bitumen was detd. However, at a lower level of caustic addn., illite was shown to attach to the bitumen, with the interaction potential decreasing with increasing caustic dosage. Increasing concn. of humic acids as a result of increasing caustic dosage was identified to limit the interaction potential of illite with bitumen. This fundamental study clearly shows that the crit. role of caustics in modulating interactions of clays with bitumen depends upon the type of clays. Thus, clay type was identified as a key operational variable

    Membrane chemical stability and seed longevity

    Get PDF
    Here, we investigate the relationships between the chemical stability of the membrane surface and seed longevity. Dry embryos of long-lived tomato and short-lived onion seeds were labeled with 5-doxyl-stearic acid (5-DS). Temperature-induced loss of the electron spin resonance signal caused by chemical conversion of 5-DS to nonparamagnetic species was used to characterize the membrane surface chemical stability. No difference was found between temperature plots of 5-DS signal intensity in dry onion and tomato below 345Β K. Above this temperature, the 5-DS signal remained unchanged in tomato embryos and irreversibly disappeared in onion seeds. The role of the physical state and chemical status of the membrane environment in the chemical stability of membrane surfaces was estimated for model systems containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) dried alone or in the presence of trehalose or glucose. Fourier transform infrared spectroscopy was used to follow temperature-induced structural changes in dry POPC. Spin-label technique was used to relate the chemical stability of 5-DS with the dynamic properties of the bilayer and 5-DS motion behavior. In all the models, the decrease in 5-DS signal intensity was always observed above Tm for the membrane surface. The 5-DS signal was irreversibly lost at high temperature when dry POPC was embedded in a glucose matrix. The loss of 5-DS signal was moderate when POPC was dried alone or in the presence of trehalose. Comparison of model and in vivo data shows that the differences in longevity between onion and tomato seeds are caused by differences in the chemical status of the membrane surface rather than the degree of its immobilization
    • …
    corecore