559 research outputs found

    The Potential for pathogenicity was present in the ancestor of the Ascomycete subphylum Pezizomycotina

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies in Ascomycetes have shown that the function of gene families of which the size is considerably larger in extant pathogens than in non-pathogens could be related to pathogenicity traits. However, by only comparing gene inventories in extant species, no insights can be gained into the evolutionary process that gave rise to these larger family sizes in pathogens. Moreover, most studies which consider gene families in extant species only tend to explain observed differences in gene family sizes by gains rather than by losses, hereby largely underestimating the impact of gene loss during genome evolution.</p> <p>Results</p> <p>In our study we used a selection of recently published genomes of Ascomycetes to analyze how gene family gains, duplications and losses have affected the origin of pathogenic traits. By analyzing the evolutionary history of gene families we found that most gene families with an enlarged size in pathogens were present in an ancestor common to both pathogens and non-pathogens. The majority of these families were selectively maintained in pathogenic lineages, but disappeared in non-pathogens. Non-pathogen-specific losses largely outnumbered pathogen-specific losses.</p> <p>Conclusions</p> <p>We conclude that most of the proteins for pathogenicity were already present in the ancestor of the Ascomycete lineages we used in our study. Species that did not develop pathogenicity seemed to have reduced their genetic complexity compared to their ancestors. We further show that expansion of gained or already existing families in a species-specific way is important to fine-tune the specificities of the pathogenic host-fungus interaction.</p

    Earliest evidence for the ivory trade in southern Africa : isotopic and ZooMS analysis of seventh-tenth century AD ivory from KwaZulu-Natal

    Get PDF
    KwaGandaganda, Ndondondwane and Wosi were major Early Farming Community settlements in what is today the KwaZulu-Natal province of South Africa. These sites have yielded, among other remains, abundant evidence of ivory and ivory working dating to the seventh–tenth centuries ad, pre-dating by approximately 200 years the better-known ivory artefacts from sites in the Limpopo River Valley and surrounding regions. We report the results of carbon, nitrogen and strontium isotope analysis to explore the origins and procurement of this ivory, in combination with Zooarchaeology by Mass Spectrometry (ZooMS) to identify the species of animals from which it was derived. All of the ivory studied using ZooMS was elephant, despite the presence of hippopotamus remains on all three sites. Some ivory was probably obtained from elephant herds that lived close to the sites, in the densely wooded river valleys favoured by both elephants and early farmers. Other material came from savannah environments further afield. Ivory found at these three sites was drawn from different catchments, implying a degree of landscape/resource partitioning even at this early stage. These communities clearly invested substantial effort in obtaining ivory from across the region, which speaks to the importance of this commodity in the economy of the time. We suggest that some ivory items were for local use, but that some may have been intended for more distant markets via Indian Ocean trade

    Predicting the Tolerated Sequences for Proteins and Protein Interfaces Using RosettaBackrub Flexible Backbone Design

    Get PDF
    Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface), interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others

    ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Zinc Finger Nucleases (ZFNs) have tremendous potential as tools to facilitate genomic modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized Pool ENgineering (OPEN) method. The motivation for this study is to make resources for genome modifications using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies and provides quality scores for all potential ZFN target sites in the complete genomes of several model organisms.</p> <p>Description</p> <p>ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites, mapped within the fully sequenced genomes of seven model organisms; <it>S. cerevisiae, C. reinhardtii, A. thaliana</it>, <it>D. melanogaster, D. rerio, C. elegans</it>, and <it>H. sapiens </it>and can be visualized within the flexible GBrowse environment. Additional model organisms will be included in future updates. ZFNGenome provides information about each potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s). Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence). Tracks in ZFNGenome also provide "uniqueness" and ZiFOpT (Zinc Finger OPEN Targeter) "confidence" scores that estimate the likelihood that a chosen ZFN target site will function <it>in vivo</it>. ZFNGenome is dynamically linked to ZiFDB, allowing users access to all available information about zinc finger reagents, such as the effectiveness of a given ZFN in creating double-stranded breaks.</p> <p>Conclusions</p> <p>ZFNGenome provides a user-friendly interface that allows researchers to access resources and information regarding genomic target sites for engineered ZFNs in seven model organisms. This genome-wide database of potential ZFN target sites should greatly facilitate the utilization of ZFNs in both basic and clinical research.</p> <p>ZFNGenome is freely available at: <url>http://bindr.gdcb.iastate.edu/ZFNGenome</url> or at the Zinc Finger Consortium website: <url>http://www.zincfingers.org/</url>.</p

    Retinoic acid reduces human neuroblastoma cell migration and invasiveness: effects on DCX, LIS1, neurofilaments-68 and vimentin expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma is a severe pediatric tumor, histologically characterised by a variety of cellular phenotypes. One of the pharmacological approaches to neuroblastoma is the treatment with retinoic acid. The mechanism of action of retinoic acid is still unclear, and the development of resistance to this differentiating agent is a great therapy problem.</p> <p>Doublecortin, a microtubule-associated protein involved in neuronal migration, has recently been proposed as a molecular marker for the detection of minimal residual disease in human neuroblastoma. Nevertheless, no information is available on the expression of doublecortin in the different cell-types composing human neuroblastoma, its correlation with neuroblastoma cell motility and invasiveness, and the possible modulations exerted by retinoic acid treatment.</p> <p>Methods</p> <p>We analysed by immunofluorescence and by Western blot analysis the presence of doublecortin, lissencephaly-1 (another protein involved in neuronal migration) and of two intermediate filaments proteins, vimentin and neurofilament-68, in SK-N-SH human neuroblastoma cell line both in control conditions and under retinoic acid treatment. Migration and cell invasiveness studies were performed by wound scratch test and a modified microchemotaxis assay, respectively.</p> <p>Results</p> <p>Doublecortin is expressed in two cell subtypes considered to be the more aggressive and that show high migration capability and invasiveness.</p> <p>Vimentin expression is excluded by these cells, while lissencephaly-1 and neurofilaments-68 are immunodetected in all the cell subtypes of the SK-N-SH cell line. Treatment with retinoic acid reduces cell migration and invasiveness, down regulates doublecortin and lissencephaly-1 expression and up regulates neurofilament-68 expression. However, some cells that escape from retinoic acid action maintain migration capability and invasiveness and express doublecortin.</p> <p>Conclusion</p> <p>a) Doublecortin is expressed in human neuroblastoma cells that show high motility and invasiveness;</p> <p>b) Retinoic acid treatment reduces migration and invasiveness of the more aggressive cell components of SK-N-SH cells;</p> <p>c) The cells that after retinoic acid exposure show migration and invasive capability may be identified on the basis of doublecortin expression.</p

    Carcinoma of an unknown primary: are EGF receptor, Her-2/neu, and c-Kit tyrosine kinases potential targets for therapy?

    Get PDF
    Carcinomas of an unknown primary site (CUP) are heterogeneous tumours with a median survival of only 8 months. Tyrosine kinase inhibitors are promising new drugs. The aim of this study was to determine the expression of EGF-receptor, Her-2/neu, and c-Kit tyrosine kinases in CUP. Paraffin-embedded specimens were obtained from 54 patients with a CUP who were included in the GEFCAPI 01 randomised phase II trial. Immunohistochemistry was performed using the Dako autostainer with antibodies directed against HER-2/neu protein, EGFR protein, and c-Kit protein (CD117). EGFR expression was found in 36 out of 54 samples (66%). In contrast, Her-2/neu overexpression and c-Kit positivity were only detected in 4 and 10% of patients, respectively. No significant association was found between the expression of the tyrosine kinase receptors and prognosis. EGFR expression was significantly associated with response to cisplatin-based chemotherapy: the response rates were 50 and 22% in patients with EGFR-positive tumours and EGFR-negative tumours, respectively (P<0.05). This study shows that EGFR is frequently expressed in CUP. This finding may prompt clinical trials investigating EGFR inhibitors in this setting. In contrast, c-Kit expression and Her-2/neu overexpression occur infrequently in CUP. EGFR expression was correlated to tumour chemosensitivity
    corecore