583 research outputs found

    One-shot optimization for vehicle dynamics control systems: towards benchmarking and exploratory landscape analysis

    Get PDF
    Algorithms and the Foundations of Software technolog

    Singular potentials and annihilation

    Get PDF
    We discuss the regularization of attractive singular potentials −αs/rs-\alpha _{s}/r^{s}, s≄2s\geq 2 by infinitesimal imaginary addition to interaction constant αs=αs±i0\alpha_{s}=\alpha_{s}\pm i0. Such a procedure enables unique definition of scattering observables and is equal to an absorption (creation) of particles in the origin. It is shown, that suggested regularization is an analytical continuation of the scattering amplitudes of repulsive singular potential in interaction constant αs\alpha_{s}. The nearthreshold properties of regularized in a mentioned way singular potential are examined. We obtain expressions for the scattering lengths, which turn to be complex even for infinitesimal imaginary part of interaction constant. The problem of perturbation of nearthreshold states of regular potential by a singular one is treated, the expressions for level shifts and widths are obtained. We show, that the physical sense of suggested regularization is that the scattering observables are insensitive to any details of the short range modification of singular potential, if there exists sufficiently strong inelastic short range interaction. In this case the scattering observables are determined by solutions of Schrodinger equation with regularized potential −(αs±i0)/rs-(\alpha_{s}\pm i0)/r^{s}. We point out that the developed formalism can be applied for the description of systems with short range annihilation, in particular low energy nucleon-antinucleon scattering.Comment: 10 page

    Singular Potentials and Limit Cycles

    Get PDF
    We show that a central 1/rn1/r^n singular potential (with n≄2n\geq 2) is renormalized by a one-parameter square-well counterterm; low-energy observables are made independent of the square-well width by adjusting the square-well strength. We find a closed form expression for the renormalization-group evolution of the square-well counterterm.Comment: 15 pages LaTex, 5 eps figures, error in figures and text correcte

    Quark exchange model for charmonium dissociation in hot hadronic matter

    Full text link
    A diagrammatic approach to quark exchange processes in meson-meson scattering is applied to the case of inelastic reactions of the type (Q\barQ)+(q\barq)\rightarrow (Q\barq) + (q\barQ), where QQ and qq refer to heavy and light quarks, respectively. This string-flip process is discussed as a microscopic mechanism for charmonium dissociation (absorption) in hadronic matter. The cross section for the reaction J/ψ+π→D+DˉJ/\psi + \pi \to D+ \bar D is calculated using a potential model, which is fitted to the meson mass spectrum. The temperature dependence of the relaxation time for the \J/Psi distribution in a homogeneous thermal pion gas is obtained. The use of charmonium for the diagnostics of the state of hot hadronic matter produced in ultrarelativistic nucleus-nucleus collisions is discussed.Comment: 24 pages, 3 tables, 7 figure

    The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    Full text link
    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8 figure

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review

    Cannabinoid receptor 2 modulates maturation of dendritic cells and their capacity to induce hapten-induced contact hypersensitivity

    Get PDF
    Contact hypersensitivity (CHS) is an established animal model for allergic contact dermatitis. Dendritic cells (DCs) play an important role in the sensitization phase of CHS by initiating T cell responses to topically applied haptens. The cannabinoid receptors 1 (CB1) and 2 (CB2) modulate DC functions and inflammatory skin responses, but their influence on the capacity of haptenized DCs to induce CHS is still unknown. We found lower CHS responses to 2,4-dinitro-1-fluorobenzene (DNFB) in wild type (WT) mice after adoptive transfer of haptenized Cnr2-/- and Cnr1-/-/Cnr2-/- bone marrow (BM) DCs as compared to transfer of WT DCs. In contrast, induction of CHS was not affected in WT recipients after transfer of Cnr1-/- DCs. In vitro stimulated Cnr2-/- DCs showed lower CCR7 and CXCR4 expression when compared to WT cells, while in vitro migration towards the chemokine ligands was not affected by CB2. Upregulation of MHC class II and co-stimulatory molecules was also reduced in Cnr2-/- DCs. This study demonstrates that CB2 modulates the maturation phenotype of DCs but not their chemotactic capacities in vitro. These findings and the fact that CHS responses mediated by Cnr2-/- DCs are reduced suggest that CB2 is a promising target for the treatment of inflammatory skin conditions.Evelyn Gaffal, Andrea M. Kemter, Stefanie Scheu, Rafael Leite Dantas, Jens Vogt, Bernhard Baune, Thomas TĂŒting, Andreas Zimmer and Judith Alferin

    Last Call for RHIC Predictions

    Get PDF
    This paper contains the individual contributions of all speakers of the session on 'Last Call for RHIC Predictions' at Quark Matter 99, and a summary by the convenor.Comment: 56 pages, psfig, epsf, epsfig, graphicx style files required, Proceedings of the XIV Int. Conf. on Nucleus-Nucleus Collisions, Quark Matter 99, Torino, Italy, May 10 - 15, 1999. Typographical mistakes corrected and figure numbers change
    • 

    corecore