466 research outputs found

    Layer-resolved imaging of domain wall interactions in magnetic tunnel junction-like trilayers

    Full text link
    We have performed a layer-resolved, microscopic study of interactions between domain walls in two magnetic layers separated by a non-magnetic one, using high-resolution x-ray photoemission electron microscopy. Domain walls in the hard magnetic Co layer of a Co/Al2O3/FeNi trilayer with in-plane uniaxial anisotropy strongly modify the local magnetization direction in the soft magnetic FeNi layer. The stray fields associated to the domain walls lead to an antiparallel coupling between the local Co and FeNi moments. For domain walls parallel to the easy magnetization axis this interaction is limited to the domain wall region itself. For strongly charged (head-on or tail-to-tail) walls, the antiparallel coupling dominates the interaction over radial distances up to several micrometers from the centre of the domain wall.Comment: Published version, J. Phys.: Condens. Matter 19, 476204 (2007

    La pollution par les composés fluorés et ses effets sur les arbres fruitiers du Valais

    Get PDF
    Publié également sous la forme de tiré à part

    SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation

    Get PDF
    We describe a potential novel process (SunCHem) for the production of bio-methane via hydrothermal gasification of microalgae, envisioned as a closed-loop system, where the nutrients, water, and CO2 produced are recycled. The influence on the growth of microalgae of nickel, a trace contaminant that might accumulate upon effluent recycling, was investigated. For all microalgae tested, the growth was adversely affected by the nickel present (1, 5, and 10 ppm). At 25 ppm Ni, complete inhibition of cell division occurred. Successful hydrothermal gasification of the microalgae Phaeodactylum tricornutum to a methane-rich gas with high carbon gasification efficiency (68-74%) and C1-C3 hydrocarbon yields of 0.2 gC1-C3/gDM (DM, dry matter) was demonstrated. The biomass-released sulfur was shown to adversely affect Ru/C catalyst performance. Liquefaction of P. tricornutum at short residence times around 360°C was possible without coke formatio

    High domain wall velocity at zero magnetic field induced by low current densities in spin-valve nanostripes

    Full text link
    Current-induced magnetic domain wall motion at zero magnetic field is observed in the permalloy layer of a spin-valve-based nanostripe using photoemission electron microscopy. The domain wall movement is hampered by pinning sites, but in between them high domain wall velocities (exceeding 150 m/s) are obtained for current densities well below 10^{12} \unit{A/m^2}, suggesting that these trilayer systems are promising for applications in domain wall devices in case of well controlled pinning positions. Vertical spin currents in these structures provide a potential explanation for the increase in domain wall velocity at low current densities.Comment: Published version, Applied Physics Express 2, 023003 (2009) http://dx.doi.org/10.1143/APEX.2.02300

    Causal mechanisms underlying host specificity in bat ectoparasites

    Get PDF
    In parasites, host specificity may result either from restricted dispersal capacity or from fixed coevolutionary host-parasite adaptations. Knowledge of those proximal mechanisms leading to particular host specificity is fundamental to understand host-parasite interactions and potential coevolution of parasites and hosts. The relative importance of these two mechanisms was quantified through infection and cross-infection experiments using mites and bats as a model. Monospecific pools of parasitic mites (Spinturnix myoti and S. andegavinus) were subjected either to individual bats belonging to their traditional, native bat host species, or to another substitute host species within the same bat genus (Myotis). The two parasite species reacted differently to these treatments. S. myoti exhibited a clear preference for, and had a higher fitness on, its native host, Myotis myotis. In contrast, S. andegavinus showed no host choice, although its fitness was higher on its native host M. daubentoni. The causal mechanisms mediating host specificity can apparently differ within closely related host-parasite system

    Subspecies typing of Streptococcus agalactiae based on ribosomal subunit protein mass variation by MALDI-TOF MS

    Get PDF
    Background: A ribosomal subunit protein (rsp)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was developed for fast subspecies-level typing of Streptococcus agalactiae (Group B Streptococcus, GBS), a major cause of neonatal sepsis and meningitis. Methods: A total of 796 GBS whole genome sequences, covering the genetic diversity of the global GBS population, were used to in silico predict molecular mass variability of 28 rsp and to identify unique rsp mass combinations, termed “rsp-profiles”. The in silico established GBS typing scheme was validated by MALDI-TOF MS analysis of GBS isolates at two independent research sites in Europe and South East Asia. Results: We identified in silico 62 rsp-profiles, with the majority (>80%) of the 796 GBS isolates displaying one of the six rsp-profiles 1-6. These dominant rsp-profiles classify GBS strains in high concordance with the core-genome based phylogenetic clustering. Validation of our approach by in-house MALDI-TOF MS analysis of 248 GBS isolates and external analysis of 8 GBS isolates showed that across different laboratories and MALDI-TOF MS platforms, the 28 rsp were detected reliably in the mass spectra, allowing assignment of clinical isolates to rsp-profiles at high sensitivity (99%) and specificity (97%). Our approach distinguishes the major phylogenetic GBS genotypes, identifies hyper-virulent strains, predicts the probable capsular serotype and surface protein variants and distinguishes between GBS genotypes of human and animal origin. Conclusion: We combine the information depth of whole genome sequences with the highly cost efficient, rapid and robust MALDI-TOF MS approach facilitating high-throughput, inter-laboratory, large-scale GBS epidemiological and clinical studies based on pre-defined rsp-profiles

    Optimal Process Design of Hydrothermal SNG Production from Waste Biomass

    Get PDF
    Hydrothermal gasification of biomass in supercritical water is one of the rare pathways that potentially allows for a complete conversion of wet waste biomass into Synthetic Natural Gas (SNG). This paper summarises an extensive process design study and discusses some key aspects of the process integration and, in particular, the influence of the feedstock on the optimal process design and its performances. It thereby demonstrates that the process design and performance is not only influenced by available technology, catalyst deactivation issues and scale, but also the characteristics of the processed substrate

    Chemicals from Lignin by Catalytic Fast Pyrolysis, from Product Control to Reaction Mechanism

    Get PDF
    Conversion of lignin into renewable and value-added chemicals by thermal processes, especially pyrolysis, receives great attention. The products may serve as feedstock for chemicals and fuels and contribute to the development of a sustainable society. However, the application of lignin conversion is limited by the low selectivity from lignin to the desired products. The opportunities for catalysis to selectively convert lignin into useful chemicals by catalytic fast pyrolysis and our efforts to elucidate the mechanism of lignin pyrolysis are discussed. Possible research directions will be identified

    Optimal process design for the polygeneration of SNG, power and heat by hydrothermal gasification of waste biomass: Process optimisation for selected substrates

    Get PDF
    Based on a previously developed thermo-economic process model, this paper presents a detailed design study for the polygeneration of Synthetic Natural Gas (SNG), power and heat by catalytic hydrothermal gasification of biomass and biomass wastes in supercritical water. Using multi-objective optimisation techniques, the thermodynamic and thermo-economic performances of all candidate configurations from a general process superstructure are optimised with respect to SNG and electricity cogeneration and its associated investment cost, production cost and plant profitability. The paper demonstrates how both the optimal system configuration, its operating conditions and performances depend on the available technology, catalyst lifetime, process scale and the characteristics of the processed substrate
    • …
    corecore