29 research outputs found

    Research Notes : Exotic soybean observational yield performance trial in Kien Gian province --Mekong Delta --Vietnam --dry season 1981-1982

    Get PDF
    In the light of mutual technical assistance, six soybean varieties, namely \u27Bon minori\u27 (2 lines), \u27Enrei\u27 (2 lines), \u27Akiyoshi\u27 and \u27Hyuuga\u27, were forwarded by registered mail from Japan to Vietnam in May, 1981. Due to its long postal course, soybean seed was only received in November 1981. A month later, seeds were planted on December 10, 1981, at the provincial seed farm of Kien Giang province and then harvested on February 26, 1982

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Mapping Submerged Aquatic Vegetation along the Central Vietnamese Coast Using Multi-Source Remote Sensing

    No full text
    Submerged aquatic vegetation (SAV) in the Khanh Hoa (Vietnam) coastal area plays an important role in coastal communities and the marine ecosystem. However, SAV distribution varies widely, in terms of depth and substrate types, making it difficult to monitor using in-situ measurement. Remote sensing can help address this issue. High spatial resolution satellites, with more bands and higher radiometric sensitivity, have been launched recently, including the Vietnamese Natural Resources, Environment, and Disaster Monitoring Satellite (VNREDSat-1) (V1) sensor from Vietnam, launched in 2013. The objective of the study described here was to establish SAV distribution maps for South-Central Vietnam, particularly in the Khanh Hoa coastal area, using Sentinel-2 (S2), Landsat-8, and V1 imagery, and then to assess any changes to SAV over the last ten years, using selected historical data. The satellite top-of-atmosphere signals were initially converted to radiance, and then corrected for atmospheric effects. This treated signal was then used to classify Khanh Hoa coastal water substrates, and these classifications were evaluated using 101 in-situ measurements, collected in 2017 and 2018. The results showed that the three satellites could provide high accuracy, with Kappa coefficients above 0.84, with V1 achieving over 0.87. Our results showed that, from 2008 to 2018, SAV acreage in Khanh Hoa was reduced by 74.2%, while gains in new areas compensated for less than half of these losses. This is the first study to show the potential for using V1 and S2 data to assess the distribution status of SAV in Vietnam, and its outcomes will contribute to the conservation of SAV beds, and to the sustainable exploitation of aquatic resources in the Khanh Hoa coastal area.</jats:p

    Research Notes : Exotic soybean observational yield performance trial in Kien Gian province --Mekong Delta --Vietnam --dry season 1981-1982

    No full text
    In the light of mutual technical assistance, six soybean varieties, namely 'Bon minori' (2 lines), 'Enrei' (2 lines), 'Akiyoshi' and 'Hyuuga', were forwarded by registered mail from Japan to Vietnam in May, 1981. Due to its long postal course, soybean seed was only received in November 1981. A month later, seeds were planted on December 10, 1981, at the provincial seed farm of Kien Giang province and then harvested on February 26, 1982.</p

    Genetic improvement of cassava in Vietnam: current status and future approaches

    No full text

    Modelo utilitário de improvisação musical e modelo Bourdieusiano de produção simbólica : dois ensaios de jogos cooperativos

    No full text
    Este trabalho propõe-se a realizar dois ensaios de modelagem e interpretação de jogos cooperativos. O primeiro trata de um jogo entre dois músicos em improvisação musical, destacando-se campos de prática idiomática enquanto normas e convenções; observa-se, nesse caso, que a improvisação livre apresenta-se como mais adequada do que a improvisação idiomática ao comportamento previsto pela teoria dos jogos pura. O segundo trata de um jogo entre produtor e difusor de bens simbólicos no mercado de bens simbólicos bourdieusiano, destacando-se o campo da arte em vias de consagração (e.g. cinema, fotografia e jazz); nesse caso, observa-se que a tomada de decisão-posição dos jogadores ocorre em função da conversibilidade entre capitais econômicos e simbólicos em cada campo de produção simbólica.This work proposes to carry out two tests of modeling and interpretation of cooperative games. The first deals with a game between two musicians in musical improvisation; in this case, it is observed that free improvisation is more appropriate than idiomatic improvisation to the behavior predicted by a pure game theory. The second deals with a game between producer and diffuser of symbolic goods in the bourdieusian symbolic goods market; in this case, it is observed that the decision-position of the players occurs due to the convertibility between economic and symbolic capital in each field of symbolic production
    corecore