104 research outputs found
Egg shape changes at the theropodâbird transition, and a morphometric study of amniote eggs
The eggs of amniotes exhibit a remarkable variety of shapes,
from spherical to elongate and from symmetrical to asymmetrical.
We examine eggshell geometry in a diverse sample of fossil
and living amniotes using geometric morphometrics and linear
measurements. Our goal is to quantify patterns of morphospace
occupation and shape variation in the eggs of recent through to
Mesozoic birds (neornithe plus non-neornithe avialans), as well
as in eggs attributed to non-avialan theropods. In most amniotes,
eggs show signiďŹcant deviation from sphericity, but departure
from symmetry around the equatorial axis is mostly conďŹned
to theropods and birds. Mesozoic bird eggs differ signiďŹcantly
from extant bird eggs, but extinct Cenozoic bird eggs do not. This
suggests that the range of egg shapes in extant birds had already
been attained in the Cenozoic. We conclude with a discussion
of possible biological factors imparting variation to egg shapes
during their formation in the oviduct
Abiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2
Low pO(2) values have been measured in the perivitelline fluids (PVF) of marine animal eggs on several occasions, especially towards the end of development, when embryonic oxygen consumption is at its peak and the egg case acts as a massive barrier to diffusion. Several authors have therefore suggested that oxygen availability is the key factor leading to hatching. However, there have been no measurements of PVF pCO(2) so far. This is surprising, as elevated pCO(2) could also constitute a major abiotic stressor for the developing embryo. As a first attempt to fill this gap in knowledge, we measured pO(2), pCO(2) and pH in the PVF of late cephalopod (Sepia officinalis) eggs. We found linear relationships between embryo wet mass and pO(2), pCO(2) and pH. pO(2) declined from > 12 kPa to less than 5 kPa, while pCO(2) increased from 0.13 to 0.41 kPa. In the absence of active accumulation of bicarbonate in the PVF, pH decreased from 7.7 to 7.2. Our study supports the idea that oxygen becomes limiting in cephalopod eggs towards the end of development; however, pCO(2) and pH shift to levels that have caused significant physiological disturbances in other marine ectothermic animals. Future research needs to address the physiological adaptations that enable the embryo to cope with the adverse abiotic conditions in their egg environment
Heterogeneity of variance components for preweaning growth in Romane sheep due to the number of lambs reared
<p>Abstract</p> <p>Background</p> <p>The pre-weaning growth rate of lambs, an important component of meat market production, is affected by maternal and direct genetic effects. The French genetic evaluation model takes into account the number of lambs suckled by applying a multiplicative factor (1 for a lamb reared as a single, 0.7 for twin-reared lambs) to the maternal genetic effect, in addition to including the birth*rearing type combination as a fixed effect, which acts on the mean. However, little evidence has been provided to justify the use of this multiplicative model. The two main objectives of the present study were to determine, by comparing models of analysis, 1) whether pre-weaning growth is the same trait in single- and twin-reared lambs and 2) whether the multiplicative coefficient represents a good approach for taking this possible difference into account.</p> <p>Methods</p> <p>Data on the pre-weaning growth rate, defined as the average daily gain from birth to 45 days of age on 29,612 Romane lambs born between 1987 and 2009 at the experimental farm of La Sapinière (INRA-France) were used to compare eight models that account for the number of lambs per dam reared in various ways. Models were compared using the Akaike information criteria.</p> <p>Results</p> <p>The model that best fitted the data assumed that 1) direct (maternal) effects correspond to the same trait regardless of the number of lambs reared, 2) the permanent environmental effects and variances associated with the dam depend on the number of lambs reared and 3) the residual variance depends on the number of lambs reared. Even though this model fitted the data better than a model that included a multiplicative coefficient, little difference was found between EBV from the different models (the correlation between EBV varied from 0.979 to 0.999).</p> <p>Conclusions</p> <p>Based on experimental data, the current genetic evaluation model can be improved to better take into account the number of lambs reared. Thus, it would be of interest to evaluate this model on field data and update the genetic evaluation model based on the results obtained.</p
Excretion patterns of coccidian oocysts and nematode eggs during the reproductive season in Northern Bald Ibis (Geronticus eremita)
Individual reproductive success largely depends on the ability to optimize behaviour, immune function and the physiological stress response. We have investigated correlations between behaviour, faecal steroid metabolites, immune parameters, parasite excretion patterns and reproductive output in a critically endangered avian species, the Northern Bald Ibis (Geronticus eremita). In particular, we related haematocrit, heterophil/lymphocyte ratio, excreted immune-reactive corticosterone metabolites and social behaviour with parasite excretion and two individual fitness parameters, namely, number of eggs laid and number of fledglings. We found that the frequency of excretion of parasitesâ oocysts and eggs tended to increase with ambient temperature. Paired individuals excreted significantly more samples containing nematode eggs than unpaired ones. The excretion of nematode eggs was also significantly more frequent in females than in males. Individuals with a high proportion of droppings containing coccidian oocysts were more often preened by their partners than individuals with lower excretion rates. We observed that the more eggs an individual incubated and the fewer offspring fledged, the higher the rates of excreted samples containing coccidian oocysts. Our results confirm that social behaviour, physiology and parasite burden are linked in a complex and context-dependent manner. They also contribute background information supporting future conservation programmes dealing with this critically endangered species
Estimating Heritabilities and Genetic Correlations: Comparing the âAnimal Modelâ with Parent-Offspring Regression Using Data from a Natural Population
Quantitative genetic parameters are nowadays more frequently estimated with restricted maximum likelihood using the âanimal modelâ than with traditional methods such as parent-offspring regressions. These methods have however rarely been evaluated using equivalent data sets. We compare heritabilities and genetic correlations from animal model and parent-offspring analyses, respectively, using data on eight morphological traits in the great reed warbler (Acrocephalus arundinaceus). Animal models were run using either mean trait values or individual repeated measurements to be able to separate between effects of including more extended pedigree information and effects of replicated sampling from the same individuals. We show that the inclusion of more pedigree information by the use of mean traits animal models had limited effect on the standard error and magnitude of heritabilities. In contrast, the use of repeated measures animal model generally had a positive effect on the sampling accuracy and resulted in lower heritabilities; the latter due to lower additive variance and higher phenotypic variance. For most trait combinations, both animal model methods gave genetic correlations that were lower than the parent-offspring estimates, whereas the standard errors were lower only for the mean traits animal model. We conclude that differences in heritabilities between the animal model and parent-offspring regressions were mostly due to the inclusion of individual replicates to the animal model rather than the inclusion of more extended pedigree information. Genetic correlations were, on the other hand, primarily affected by the inclusion of more pedigree information. This study is to our knowledge the most comprehensive empirical evaluation of the performance of the animal model in relation to parent-offspring regressions in a wild population. Our conclusions should be valuable for reconciliation of data obtained in earlier studies as well as for future meta-analyses utilizing estimates from both traditional methods and the animal model
Eggs in the Freezer: Energetic Consequences of Nest Site and Nest Design in Arctic Breeding Shorebirds
Birds construct nests for several reasons. For species that breed in the Arctic, the insulative properties of nests are very important. Incubation is costly there and due to an increasing surface to volume ratio, more so in smaller species. Small species are therefore more likely to place their nests in thermally favourable microhabitats and/or to invest more in nest insulation than large species. To test this hypothesis, we examined characteristics of nests of six Arctic breeding shorebird species. All species chose thermally favourable nesting sites in a higher proportion than expected on the basis of habitat availability. Site choice did not differ between species. Depth to frozen ground, measured near the nests, decreased in the course of the season at similar non-species-specific speeds, but this depth increased with species size. Nest cup depth and nest scrape depth (nest cup without the lining) were unrelated to body mass (we applied an exponent of 0.73, to account for metabolic activity of the differently sized species). Cup depth divided by diameter2 was used as a measure of nest cup shape. Small species had narrow and deep nests, while large species had wide shallow nests. The thickness of nest lining varied between 0.1 cm and 7.6 cm, and decreased significantly with body mass. We reconstruct the combined effect of different nest properties on the egg cooling coefficient using previously published quantitative relationships. The predicted effect of nest cup depth and lining depth on heat loss to the frozen ground did not correlate with body mass, but the sheltering effect of nest cup diameter against wind and the effects of lining material on the cooling coefficient increased with body mass. Our results suggest that small arctic shorebirds invest more in the insulation of their nests than large species
Evaluating the impact of handling and logger attachment on foraging parameters and physiology in southern rockhopper penguins
Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin ( Eudyptes chrysocome ) females during the guard stage in three consecutive breeding seasons (2008/09â2010/11) to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs) were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs), but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts). Overall, handling and short-term logger attachments (1-3 days) showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their normal dive behaviour
Variation of Basal EROD Activities in Ten Passerine Bird Species â Relationships with Diet and Migration Status
Inter-specific differences in animal defence mechanisms against toxic substances are currently poorly understood. The ethoxyresorufin-O-deethylase (EROD) enzyme plays an important role in defence against toxic chemicals in a wide variety of animals, and it is an important biomarker for environmental contamination. We compared basal hepatic EROD activity levels among ten passerine species to see if there is inter-specific variation in enzyme activity, especially in relation to their diet and migration status. Migratory insectivores showed higher EROD activity compared to granivores. We hypothesize that the variable invertebrate diet of migratory insectivores contains a wider range of natural toxins than the narrower diet of granivores. This may have affected the evolution of mixed function oxidases (MFO) system and enzyme activities. We further tested whether metabolic rates or relative liver size were associated with the variation in detoxification capacity. We found no association between EROD activity and relative (per mass unit) basal metabolic rate (BMR). Instead, EROD activity and relative liver mass (% of body mass) correlated positively, suggesting that a proportionally large liver also functions efficiently. Our results suggest that granivores and non-migratory birds may be more vulnerable to environmental contaminants than insectivores and migratory birds. The diet and migration status, however, are phylogenetically strongly connected to each other, and their roles cannot be fully separated in our analysis with only ten passerine species
The one dimensional Kondo lattice model at partial band filling
The Kondo lattice model introduced in 1977 describes a lattice of localized
magnetic moments interacting with a sea of conduction electrons. It is one of
the most important canonical models in the study of a class of rare earth
compounds, called heavy fermion systems, and as such has been studied
intensively by a wide variety of techniques for more than a quarter of a
century. This review focuses on the one dimensional case at partial band
filling, in which the number of conduction electrons is less than the number of
localized moments. The theoretical understanding, based on the bosonized
solution, of the conventional Kondo lattice model is presented in great detail.
This review divides naturally into two parts, the first relating to the
description of the formalism, and the second to its application. After an
all-inclusive description of the bosonization technique, the bosonized form of
the Kondo lattice hamiltonian is constructed in detail. Next the
double-exchange ordering, Kondo singlet formation, the RKKY interaction and
spin polaron formation are described comprehensively. An in-depth analysis of
the phase diagram follows, with special emphasis on the destruction of the
ferromagnetic phase by spin-flip disorder scattering, and of recent numerical
results. The results are shown to hold for both antiferromagnetic and
ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure
- âŚ