2 research outputs found

    Determination of Oxygen Permeability in Acrylic-Based Hydrogels by Proton NMR Spectroscopy and Imaging

    Full text link
    Polymer network membranes with a high capacity for water absorption are obtained by radical polymerization of N-[2-(2-hydroxyethoxy)ethyl]methacrylamide (HEEMAM). The permeability, solubility, and diffusion coefficients of oxygen in hydrogels are determined using nuclear magnetic resonance (NMR) methods based on the paramagnetic effect of dissolved oxygen gas on the proton spin-lattice relaxation times of water, and the results are compared with those obtained with electrochemical procedures. The results of NMR measurements of oxygen transport coefficients in distilled water show excellent agreement with corresponding literature values. The results of the potentiostatic and NMR oxygen transport measurements in hydrogels are in reasonable agreement and support the viability of the NMR methodThe authors gratefully acknowledge financial support provided by the Spanish Ministerio de Economia y Competitividad, projects MAT2011-29174-C02-02, FEDER MAT2011-22544, and FIS PI11/01436, and the Consejeria de Educacion-Junta de Castilla y Leon, project BU232U13.Compañ Moreno, V.; Mollá Romano, S.; Vallejos, S.; Garcia, F.; Miguel Garcia, J.; Guzman, J.; Garrido, L. (2014). Determination of Oxygen Permeability in Acrylic-Based Hydrogels by Proton NMR Spectroscopy and Imaging. Macromolecular Chemistry and Physics. 215(7):624-637. https://doi.org/10.1002/macp.201300730S6246372157Kazanskii, K. S., & Dubrovskii, S. A. (1992). Chemistry and physics of «agricultural» hydrogels. Advances in Polymer Science, 97-133. doi:10.1007/3-540-55109-3_3Tsuruta, T. (1996). Contemporary topics in polymeric materials for biomedical applications. Advances in Polymer Science, 1-51. doi:10.1007/3-540-60484-7_1Goda, T., & Ishihara, K. (2006). Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Review of Medical Devices, 3(2), 167-174. doi:10.1586/17434440.3.2.167McGlinchey, S. M., McCoy, C. P., Gorman, S. P., & Jones, D. S. (2008). Key biological issues in contact lens development. Expert Review of Medical Devices, 5(5), 581-590. doi:10.1586/17434440.5.5.581Gates, G., Harmon, J. ., Ors, J., & Benz, P. (2003). Intra and intermolecular relaxations 2,3-dihydroxypropyl methacrylate and 2-hydroxyethyl methacrylate hydrogels. Polymer, 44(1), 207-214. doi:10.1016/s0032-3861(02)00725-5Compañ, V., Tiemblo, P., García, F., García, J. M., Guzmán, J., & Riande, E. (2005). A potentiostatic study of oxygen transport through poly(2-ethoxyethyl methacrylate-co-2,3-dihydroxypropylmethacrylate) hydrogel membranes. Biomaterials, 26(18), 3783-3791. doi:10.1016/j.biomaterials.2004.09.061Moszner, N., & Salz, U. (2007). Recent Developments of New Components for Dental Adhesives and Composites. Macromolecular Materials and Engineering, 292(3), 245-271. doi:10.1002/mame.200600414Erdodi, G., & Kennedy, J. P. (2005). Water-swollen highly oxygen permeable membranes: Analytical technique and syntheses. Journal of Polymer Science Part A: Polymer Chemistry, 43(16), 3491-3501. doi:10.1002/pola.20791Chhabra, M., Prausnitz, J. M., & Radke, C. J. (2008). Polarographic Method for Measuring Oxygen Diffusivity and Solubility in Water-Saturated Polymer Films:  Application to Hypertransmissible Soft Contact Lenses. Industrial & Engineering Chemistry Research, 47(10), 3540-3550. doi:10.1021/ie071071aHwang, S.-T., Tang, T. E. S., & Kammermeyer, K. (1971). Transport of dissolved oxygen through silicone rubber membrane. Journal of Macromolecular Science, Part B, 5(1), 1-10. doi:10.1080/00222347108212517Refojo, M. F., & Leong, F.-L. (1978). Water-dissolved-oxygen permeability coefficients of hydrogel contact lenses and boundary layer effects. Journal of Membrane Science, 4, 415-426. doi:10.1016/s0376-7388(00)83317-7Brennan, N. A., Efron, N., & Holden, B. A. (1986). Oxygen permeability of hard gas permeable contact lens materials. Clinical and Experimental Optometry, 69(3), 82-89. doi:10.1111/j.1444-0938.1986.tb06794.xCompañ, V., Andrio, A., López-Alemany, A., & Riande, E. (1999). New method to determine the true transmissibilities and permeabilities of oxygen in hydrogel membranes. Polymer, 40(5), 1153-1158. doi:10.1016/s0032-3861(98)00348-6Compa�, V., L�pez, M. L., Andrio, A., L�pez-Alemany, A., & Refojo, M. F. (1999). Determination of the oxygen transmissibility and permeability of hydrogel contact lenses. Journal of Applied Polymer Science, 72(3), 321-327. doi:10.1002/(sici)1097-4628(19990418)72:33.0.co;2-lCompañ, V. (1998). A potentiostatic study of oxygen transmissibility and permeability through hydrogel membranes. Biomaterials, 19(23), 2139-2145. doi:10.1016/s0142-9612(98)00113-6Park, J.-Y., Yoon, S. J., & Lee, H. (2003). Effect of Steric Hindrance on Carbon Dioxide Absorption into New Amine Solutions:  Thermodynamic and Spectroscopic Verification through Solubility and NMR Analysis. Environmental Science & Technology, 37(8), 1670-1675. doi:10.1021/es0260519Tomizaki, K., Kanakubo, M., Nanjo, H., Shimizu, S., Onoda, M., & Fujioka, Y. (2010). 13C NMR Studies on the Dissolution Mechanisms of Carbon Dioxide in Amine-Containing Aqueous Solvents at High Pressures toward an Integrated Coal Gasification Combined Cycle−Carbon Capture and Storage Process. Industrial & Engineering Chemistry Research, 49(3), 1222-1228. doi:10.1021/ie900870wAutret, G., Liger-Belair, G., Nuzillard, J.-M., Parmentier, M., Montreynaud, A. D. de, Jeandet, P., … Beloeil, J.-C. (2005). Use of magnetic resonance spectroscopy for the investigation of the CO2 dissolved in champagne and sparkling wines: a nondestructive and unintrusive method. Analytica Chimica Acta, 535(1-2), 73-78. doi:10.1016/j.aca.2004.11.054Seto, T., Mashimo, T., Yoshiya, I., Kanashiro, M., & Taniguchi, Y. (1992). The solubility of volatile anaesthetics in water at 25.0°C using 19F NMR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 10(1), 1-7. doi:10.1016/0731-7085(92)80003-6Segebarth, N., Aïtjeddig, L., Locci, E., Bartik, K., & Luhmer, M. (2006). Novel Method for the Measurement of Xenon Gas Solubility Using129Xe NMR Spectroscopy. The Journal of Physical Chemistry A, 110(37), 10770-10776. doi:10.1021/jp062679kPrice, W. S. (1997). Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory. Concepts in Magnetic Resonance, 9(5), 299-336. doi:10.1002/(sici)1099-0534(1997)9:53.0.co;2-uMatsukawa, S. (1999). Diffusion processes in polymer gels as studied by pulsed field-gradient spin-echo NMR spectroscopy. Progress in Polymer Science, 24(7), 995-1044. doi:10.1016/s0079-6700(99)00022-2Sen, P. N. (2004). Time-dependent diffusion coefficient as a probe of geometry. Concepts in Magnetic Resonance, 23A(1), 1-21. doi:10.1002/cmr.a.20017Pregosin, P. S. (2006). Ion pairing using PGSE diffusion methods. Progress in Nuclear Magnetic Resonance Spectroscopy, 49(3-4), 261-288. doi:10.1016/j.pnmrs.2006.09.001Kärger, J. (s. f.). Diffusion Measurements by NMR Techniques. Molecular Sieves, 85-133. doi:10.1007/3829_2007_019Walderhaug, H., Söderman, O., & Topgaard, D. (2010). Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Progress in Nuclear Magnetic Resonance Spectroscopy, 56(4), 406-425. doi:10.1016/j.pnmrs.2010.04.002Kidena, K., Ohkubo, T., Takimoto, N., & Ohira, A. (2010). PFG-NMR approach to determining the water transport mechanism in polymer electrolyte membranes conditioned at different temperatures. European Polymer Journal, 46(3), 450-455. doi:10.1016/j.eurpolymj.2009.12.012Guzmán, J., & Garrido, L. (2012). Determination of Carbon Dioxide Transport Coefficients in Liquids and Polymers by NMR Spectroscopy. The Journal of Physical Chemistry B, 116(20), 6050-6058. doi:10.1021/jp302037wWilliamson, M. J., Hubbard, H. V. S. A., & Ward, I. M. (1999). NMR measurements of self diffusion in polymer gel electrolytes. Polymer, 40(26), 7177-7185. doi:10.1016/s0032-3861(98)00859-3Hayamizu, K., Seki, S., Miyashiro, H., & Kobayashi, Y. (2006). Direct in Situ Observation of Dynamic Transport for Electrolyte Components by NMR Combined with Electrochemical Measurements. The Journal of Physical Chemistry B, 110(45), 22302-22305. doi:10.1021/jp065616aFögeling, J., Kunze, M., Schönhoff, M., & Stolwijk, N. A. (2010). Foreign-ion and self-ion diffusion in a crosslinked salt-in-polyether electrolyte. Physical Chemistry Chemical Physics, 12(26), 7148. doi:10.1039/b923894hKunze, M., Schulz, A., Wiemhöfer, H.-D., Eckert, H., & Schönhoff, M. (2010). Transport Mechanisms of Ions in Graft-Copolymer Based Salt-in-Polymer Electrolytes. Zeitschrift für Physikalische Chemie, 224(10-12), 1771-1793. doi:10.1524/zpch.2010.0036Schlayer, S., Pusch, A.-K., Pielenz, F., Beckert, S., Peksa, M., Horch, C., … Stallmach, F. (2012). X-Nuclei NMR Self-Diffusion Studies in Mesoporous Silica Foam and Microporous MOF CuBTC. Materials, 5(12), 617-633. doi:10.3390/ma5040617Bloch, F., Hansen, W. W., & Packard, M. (1946). The Nuclear Induction Experiment. Physical Review, 70(7-8), 474-485. doi:10.1103/physrev.70.474Chiarotti, G., & Giulotto, L. (1954). Proton Relaxation in Water. Physical Review, 93(6), 1241-1241. doi:10.1103/physrev.93.1241Polak, M., & Navon, G. (1974). Nuclear magnetic resonance studies of the interaction of molecular oxygen with organic compounds. The Journal of Physical Chemistry, 78(17), 1747-1750. doi:10.1021/j100610a014Nestle, N., Baumann, T., & Niessner, R. (2003). Oxygen determination in oxygen-supersaturated drinking waters by NMR relaxometry. Water Research, 37(14), 3361-3366. doi:10.1016/s0043-1354(03)00211-2Grucker, D. (2000). Oxymetry by magnetic resonance: applications to animal biology and medicine. Progress in Nuclear Magnetic Resonance Spectroscopy, 36(3), 241-270. doi:10.1016/s0079-6565(99)00022-9Mel’nichenko, N. A. (2008). The solubility of oxygen in sea water and solutions of electrolytes according to the pulse proton NMR data. Russian Journal of Physical Chemistry A, 82(9), 1533-1539. doi:10.1134/s0036024408090239Wilhelm, E., Battino, R., & Wilcock, R. J. (1977). Low-pressure solubility of gases in liquid water. Chemical Reviews, 77(2), 219-262. doi:10.1021/cr60306a003Battino, R., Rettich, T. R., & Tominaga, T. (1983). The Solubility of Oxygen and Ozone in Liquids. Journal of Physical and Chemical Reference Data, 12(2), 163-178. doi:10.1063/1.555680Garcia, H. E., & Gordon, L. I. (1992). Oxygen solubility in seawater: Better fitting equations. Limnology and Oceanography, 37(6), 1307-1312. doi:10.4319/lo.1992.37.6.1307Hamme, R. C., & Emerson, S. R. (2004). The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Research Part I: Oceanographic Research Papers, 51(11), 1517-1528. doi:10.1016/j.dsr.2004.06.009Millero, F. J., Huang, F., & Graham, T. B. (2003). Journal of Solution Chemistry, 32(6), 473-487. doi:10.1023/a:1025301314462Benson, B. B., Krause, D., & Peterson, M. A. (1979). The solubility and isotopic fractionation of gases in dilute aqueous solution. I. Oxygen. Journal of Solution Chemistry, 8(9), 655-690. doi:10.1007/bf01033696Gidrometeoizdat Leningrad, Russia 1975Delpuecha), J., Hamza, M. A., Serratrice, G., & Stébé, M. (1979). Fluorocarbons as oxygen carriers. I. An NMR study of oxygen solutions in hexafluorobenzene. The Journal of Chemical Physics, 70(6), 2680-2687. doi:10.1063/1.437853De Sainte Claire, P. (2009). Degradation of PEO in the Solid State: A Theoretical Kinetic Model. Macromolecules, 42(10), 3469-3482. doi:10.1021/ma802469uPaterson, R., & Doran, P. (1986). A spray technique for the determination of membrane diffusion and distribution coefficients by the time-lag method: evaluated for electrolyte transport through charged and uncharged membranes. Journal of Membrane Science, 26(3), 289-299. doi:10.1016/s0376-7388(00)82113-4Yang, W.-H., Smolen, V. F., & Peppas, N. A. (1981). Oxygen permeability coefficients of polymers for hard and soft contact lens applications. Journal of Membrane Science, 9(1-2), 53-67. doi:10.1016/s0376-7388(00)85117-0Compañ, V., Román, J. S., Riande, E., Sørensen, T. S., Levenfeld, B., & Andrio, A. (1996). Oxygen transport through methacrylate-based hydrogels with potential biological capability. Biomaterials, 17(12), 1243-1249. doi:10.1016/0142-9612(96)84945-3Compañ, V., Andrio, A., López-Alemany, A., Riande, E., & Refojo, M. F. (2002). Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials, 23(13), 2767-2772. doi:10.1016/s0142-9612(02)00012-1Teng, C.-L., Hong, H., Kiihne, S., & Bryant, R. G. (2001). Molecular Oxygen Spin–Lattice Relaxation in Solutions Measured by Proton Magnetic Relaxation Dispersion. Journal of Magnetic Resonance, 148(1), 31-34. doi:10.1006/jmre.2000.2219Ben-Amotz, D., & Herschbach, D. R. (1990). Estimation of effective diameters for molecular fluids. The Journal of Physical Chemistry, 94(3), 1038-1047. doi:10.1021/j100366a003Barbieri, R., Quaglia, M., Delfini, M., & Brosio, E. (1998). Investigation of water dynamic behaviour in poly(HEMA) and poly(HEMA-co-DHPMA) hydrogels by proton T2 relaxation time and self-diffusion coefficient n.m.r. measurements. Polymer, 39(5), 1059-1066. doi:10.1016/s0032-3861(97)00403-5Gómez-Valdemoro, A., Trigo, M., Ibeas, S., García, F. C., Serna, F., & García, J. M. (2011). Acrylic copolymers with pendant 1,2,4-triazole moieties as colorimetric sensory materials and solid phases for the removal and sensing of cations from aqueous media. Journal of Polymer Science Part A: Polymer Chemistry, 49(17), 3817-3825. doi:10.1002/pola.24820Schult, K. A., & PAUL, D. R. (1997). Water sorption and transport in blends of poly (vinyl pyrrolidone) and polysulfone. Journal of Polymer Science Part B: Polymer Physics, 35(4), 655-674. doi:10.1002/(sici)1099-0488(199703)35:43.0.co;2-fSavitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047Steinier, J., Termonia, Y., & Deltour, J. (1972). Smoothing and differentiation of data by simplified least square procedure. Analytical Chemistry, 44(11), 1906-1909. doi:10.1021/ac60319a045Madden, H. H. (1978). Comments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data. Analytical Chemistry, 50(9), 1383-1386. doi:10.1021/ac50031a048Andreopoulos, A. G. (1989). Properties of poly(2-hydroxyethyl acrylate) networks. Biomaterials, 10(2), 101-104. doi:10.1016/0142-9612(89)90040-9Tomar, N., Tomar, M., Gulati, N., & Nagaich, U. (2012). pHEMA hydrogels: Devices for ocular drug delivery. International Journal of Health & Allied Sciences, 1(4), 224. doi:10.4103/2278-344x.107844Chan, K., & Gleason, K. K. (2005). Initiated Chemical Vapor Deposition of Linear and Cross-linked Poly(2-hydroxyethyl methacrylate) for Use as Thin-Film Hydrogels. Langmuir, 21(19), 8930-8939. doi:10.1021/la051004qCompañ, V., Riande, E., Román, J. S., & Díaz-Calleja, R. (1993). Permeability of oxygen through membranes of poly(cyclohexyl acrylate). Polymer, 34(18), 3843-3847. doi:10.1016/0032-3861(93)90509-9Compañ, V., López-Alemany, A., Riande, E., & Refojo, M. F. (2004). Biological oxygen apparent transmissibility of hydrogel contact lenses with and without organosilicon moieties. Biomaterials, 25(2), 359-365. doi:10.1016/s0142-9612(03)00527-1Carpenter, J. H. (1966). NEW MEASUREMENTS OF OXYGEN SOLUBILITY IN PURE AND NATURAL WATER1. Limnology and Oceanography, 11(2), 264-277. doi:10.4319/lo.1966.11.2.0264Zandi, I., & Turner, C. D. (1970). The absorption of oxygen by dilute polymeric solutions Molecular diffusivity measurements. Chemical Engineering Science, 25(3), 517-528. doi:10.1016/0009-2509(70)80049-5Hung, G. W., & Dinius, R. H. (1972). Diffusivity of oxygen in electrolyte solutions. Journal of Chemical & Engineering Data, 17(4), 449-451. doi:10.1021/je60055a001TSE, F. C., & SANDALL, O. C. (1979). DIFFUSION COEFFICIENTS FOR OXYGEN AND CARBON DIOXIDE IN WATER AT 25°C BY UNSTEADY STATE DESORPTION FROM A QUIESCENT LIQUID. Chemical Engineering Communications, 3(3), 147-153. doi:10.1080/00986447908935860Baird, M. H. I., & Davidson, J. F. (1962). Annular jets—II. Chemical Engineering Science, 17(6), 473-480. doi:10.1016/0009-2509(62)85016-7Vivian, J. E., & King, C. J. (1964). Diffusivities of slightly soluble gases in water. AIChE Journal, 10(2), 220-221. doi:10.1002/aic.690100217Ferrell, R. T., & Himmelblau, D. M. (1967). Diffusion coefficients of nitrogen and oxygen in water. Journal of Chemical & Engineering Data, 12(1), 111-115. doi:10.1021/je60032a036Duda, J. L., & Vrentas, J. S. (1968). Laminar liquid jet diffusion studies. AIChE Journal, 14(2), 286-294. doi:10.1002/aic.690140215Han, P., & Bartels, D. M. (1996). Temperature Dependence of Oxygen Diffusion inH2O and D2O†. The Journal of Physical Chemistry, 100(13), 5597-5602. doi:10.1021/jp952903yMuir, C. E., Lowry, B. J., & Balcom, B. J. (2011). Measuring diffusion using the differential form of Fick’s law and magnetic resonance imaging. New Journal of Physics, 13(1), 015005. doi:10.1088/1367-2630/13/1/015005Klett, M., Giesecke, M., Nyman, A., Hallberg, F., Lindström, R. W., Lindbergh, G., & Furó, I. (2012). Quantifying Mass Transport during Polarization in a Li Ion Battery Electrolyte by in Situ 7Li NMR Imaging. Journal of the American Chemical Society, 134(36), 14654-14657. doi:10.1021/ja305461
    corecore