76 research outputs found

    Increasing power-law range in avalanche amplitude and energy distributions

    Full text link
    Power-law type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constrains that limit the power-law range for the distributions of different avalanche observables like amplitude, energy, duration or size. By considering catalogs of events that cover different observation windows, maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under- compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the later case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.Comment: 23 pages, 7 figure

    Universality of power-law exponents by means of maximum-likelihood estimation

    Get PDF
    Power-law-type distributions are extensively found when studying the behavior of many complex systems. However, due to limitations in data acquisition, empirical datasets often only cover a narrow range of observation, making it difficult to establish power-law behavior unambiguously. In this work we present a statistical procedure to merge different datasets, with two different aims. First, we obtain a broader fitting range for the statistics of different experiments or observations of the same system. Second, we establish whether two or more different systems may belong to the same universality class. By means of maximum likelihood estimation, this methodology provides rigorous statistical information to discern whether power-law exponents characterizing different datasets can be considered equal among them or not. This procedure is applied to the Gutenberg-Richter law for earthquakes and for synthetic earthquakes (acoustic emission events) generated in the laboratory: labquakes. Different earthquake catalogs have been merged finding a Gutenberg-Richter law holding for more than eight orders of magnitude in seismic moment. The value of the exponent of the energy distribution of labquakes depends on the material used in the compression experiments. By means of the procedure proposed in this manuscript, we find that the Gutenberg-Richter law for earthquakes and charcoal labquakes can be characterized by the same power-law exponent, whereas Vycor labquakes exhibit a significantly different exponent

    Increasing power-law range in avalanche amplitude and energy distributions

    Get PDF
    Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior

    Analysis of the Process Parameters for Obtaining a Stable Electrospun Process in Different Composition Epoxy/Poly ε-Caprolactone Blends with Shape Memory Properties

    Get PDF
    In this work Poly epsilon-caprolactone (PCL)/ Diglycidyl ether of bisphenol A (DGEBA) blends were electrospun and the obtained mats were UV cured to achieve shape memory properties. In the majority of studies, when blends with different compositions are electrospun, the process variables such as voltage or flow rate are fixed independently of the composition and consequently the quality of the fibers is not optimized in all of the range studied. In the present work, using the design of experiments methodology, flow rate and voltage required to obtain a stable process were evaluated as responses in addition to the fiber diameter and shape memory properties. The results showed that the solution concentration and amount of PCL played an important role in the voltage and flow rate. For the shape memory properties excellent values were achieved and no composition dependence was observed. In the case of fiber diameter, similar results to previous works were observed.This research was funded by University of the Basque Country UPV/EHU (IT618-13) and MINECO (MAT2017-84116-R)

    The Relevance of Implementing the Systematic Screening of Perioperative Myocardial Injury in Noncardiac Surgery Patients

    Get PDF
    Noncardiac surgery; Perioperative myocardial injury; ScreeningCirugía no cardíaca; Lesión miocárdica perioperatoria; CribadoCirurgia no cardíaca; Lesió miocàrdica perioperatòria; CribratgePerioperative myocardial injury (PMI) is a common cardiac complication. Recent guidelines recommend its systematic screening using high-sensitivity cardiac troponin (hs-cTn). However, there is limited evidence of local screening programs. We conducted a prospective, single-center study aimed at assessing the feasibility and outcomes of implementing systematic PMI screening. Hs-cTn concentrations were measured before and after surgery. PMI was defined as a postoperative hs-cTnT of ≥14 ng/L, exceeding the preoperative value by 50%. All patients were followed-up during the hospitalization, at one month and one year after surgery. The primary outcome was the incidence of death and major cardiovascular and cerebrovascular events (MACCE). The secondary outcomes focused on the individual components of MACCE. We included two-thirds of all eligible high-risk patients and achieved almost complete compliance with follow-ups. The prevalence of PMI was 15.7%, suggesting a higher presence of cardiovascular (CV) antecedents, increased perioperative CV complications, and higher preoperative hs-cTnT values. The all-cause death rate was 1.7% in the first month, increasing up to 11.2% at one year. The incidence of MACCE was 9.5% and 8.6% at the same time points. Given the observed elevated frequencies of PMI and MACCE, implementing systematic PMI screening is recommendable, particularly in patients with increased cardiovascular risk. However, it is important to acknowledge that achieving optimal screening implementation comes with various challenges and complexities.This study was supported by a research grant from Fundació La Marató de TV3 (20150110)

    Reprogrammable Permanent Shape Memory Materials Based on Reversibly Crosslinked Epoxy/PCL Blends

    Get PDF
    Epoxy/Polycaprolactone (PCL) blends cured with a conventional diamine (4,4′-diaminodiphenylmethane, DDM) and with different amounts of a disulfide containing diamine (4, 4´-dithioaniline, DSS) were prepared through melting. The curing process was studied by FTIR and differential scanning calorimetry (DSC) and the mechanical behavior of the networks was studied by DMA. The shape memory properties and the recyclability of the materials were also analyzed. All blends showed a very high curing degree and temperature activated shape memory effect, related to the glass transition of the epoxy resin. The PCL plasticized the mixture, allowing tailoring of the epoxy glass transition. In addition, in the blends cured with DSS, as a consequence of the disulfide exchange reaction, the permanent shape could be erased and a new shape could be reprogrammed. Using this strategy, reprogrammable permanent shape memory materials were obtained.This research was funded by Mineco, grant number MAT2017-84116-R, by the Basque Government, grant number IT1313-19. and by UPV/EHU, grant number GIU19/077

    Design and Performance of a Metal-Shielded Piezoelectric Sensor

    Full text link
    [EN] In certain circumstances when acoustic measurements are required in the presence of explosive atmospheres the sensor must be placed inside a Faraday Cage. Piezoelectric active materials are suitable for this purpose as they do not need an electrical power supply, although the metal shielding can considerably reduce sensor sensitivity, which is already low at the acoustic frequency range (<20 kHz). This paper describes a metal-shielded piezoelectric sensor designed to work in the range of frequencies between 1 and 2 kHz and in these environmental conditions. The main idea was to add a thin material layer to the front face of the piezoelectric ceramic in order to force the system to vibrate in flexure mode at low frequencies. The resonant frequency and sensitivity of the system was studied as a function of the radius, thickness, and material of the thin layer. The study includes a comparison of theoretical model, FEM simulation, and real data measured using three aluminum and three steel prototypes of different sizes.The author acknowledges financial support from Plan Estatal de Investigacion, ref. FPA2015-231 65150-C3-2-P (MINECO/FEDER), Programa para la promocion de empleo joven e implantacion de la garantia juvenil en I+D+i (PEJ-2014-A-66083), and Generalitat Valenciana AICO2016-108.cSáenz De Inestrillas Jiménez, A.; Camarena Femenia, F.; Bou Cabo, M.; Barreiro-Pérez, JM.; Reig Fabado, A. (2017). Design and Performance of a Metal-Shielded Piezoelectric Sensor. Sensors. 17(1284):1-10. https://doi.org/10.3390/s17061284S11017128

    Statistical Similarity between the Compression of a Porous Material and Earthquakes

    Get PDF
    It has long been stated that there are profound analogies between fracture experiments and earthquakes; however, few works attempt a complete characterization of the parallels between these so separate phenomena. We study the acoustic emission events produced during the compression of Vycor (SiO2). The Gutenberg-Richter law, the modified Omori's law, and the law of aftershock productivity hold for a minimum of 5 decades, are independent of the compression rate, and keep stationary for all the duration of the experiments. The waiting-time distribution fulfills a unified scaling law with a power-law exponent close to 2.45 for long times, which is explained in terms of the temporal variations of the activity rate

    Statistical similarity between the compression of a porous material and earthquakes

    Get PDF
    It has been long stated that there are profound analogies between fracture experiments and earthquakes; however, few works attempt a complete characterization of the parallelisms between these so separate phenomena. We study the Acoustic Emission events produced during the compression of Vycor (SiO&sub&2&/sub&). The Gutenberg-Richter law, the modified Omori's law, and the law of aftershock productivity hold for a minimum of 5 decades, are independent of the compression rate, and keep stationary for all the duration of the experiments. The waiting-time distribution fulfills a unified scaling law with a power-law exponent close to 2.45 for long times, which is explained in terms of the temporal variations of the activity rate
    corecore