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Increasing power-law range in avalanche amplitude and energy distributions
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Power-law–type probability density functions spanning several orders of magnitude are found for different
avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of
truncated power-law distributions. By considering catalogs of events that cover different observation windows,
the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to
amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of
a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for
amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental
limitations might alter the power-law behavior.
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I. INTRODUCTION

Avalanche processes are present in a vast number of out-of-
equilibrium physical phenomena [1–3]. These processes are
characterized by intense bursts of activity preceded by periods
of silence and can be described in terms of probability density
functions (PDFs) that exhibit lack of finite moments due to
their power-law shape. Consequently, fitting PDFs to different
avalanche properties such as size, energy, or amplitude is
a task that requires a rigorous treatment [4,5]. One of the
most important features of this kind of functions is their
invariance under any scale transformation which can be written
as f (λx) = λ−γ f (x) for x ∈ (0,+∞). The only solution for all
λ of this functional equation [6] is a power-law f (x) = Cx−γ ,
where the exponent γ can take any real value and C is a
constant.

Some experimental works claim the presence of scale
invariance with power-law behavior which scarcely covers a
few orders of magnitude [7–9]. However, the shorter the power-
law range the less reliable the property of scale invariance
[10,11]. The distributions of amplitude of acoustic emission
(AE) avalanches have been studied in different experimental
works [12–16]. Nevertheless, experimental fitted distributions
expand by at most two orders of magnitude in voltages
[12,16–18] due to the limitations in the observation windows.
Typically the existence of noise and/or undercounting effects
affects the smallest observable values, whereas saturation
and/or lack of statistics due to undersampling limits the
largest observable values. In most cases, these experimental
limitations introduce cutoffs in the distributions that usually are
not sharp due, for instance, to electronic uncertainties. Recent
studies regarding the AE in compression experiments of porous
materials [19–21], wood [22], ethanol-dampened charcoal
[23], confined-granular matter under continuous shear [24],

etc., have focused the attention in the energy distribution of
avalanches due to the similarities with the Gutenberg-Richter
law for earthquakes [25].

In this paper, we devise a procedure to broaden the range
of validity of power-law–like behavior of the distributions
corresponding to avalanche amplitudes and energies. From a
set of ncat catalogs of events the measured properties of which
span different observation windows, data analysis is performed
by assembling them in order to obtain global exponents that
characterize the distribution of these avalanche properties.
Through this procedure, the fitted global distribution spans a
broader range than the ones from the fit of every individual
catalog.

This paper is organized as follows: In Sec. II an overview
of the fitting procedure is shown. In Sec. III we present the
experimental methodology in the recording of AE during
displacement-driven compression of porous glasses [21]. In
Secs. IV and V avalanche amplitudes and energies are studied,
respectively, by applying the methodology given in Sec. II.
Finally, a brief summary of the results is presented in Sec. VI.

II. GENERAL METHODOLOGY

By considering ncat catalogs of Ni (i = 1, . . . ,ncat) events
each, corresponding to different experiments (or different
observation windows) and characterized by a set of prop-
erties (amplitude, energy, duration, etc.), one wants to fit a
general power-law–type PDF with a global exponent for all
the catalogs. Note that, in the ith catalog, the variable X can
acquire values in a range typically spanning several orders of
magnitude. The first step consists in fitting a power-law PDF
in a range [ai,bi] for each catalog via maximum likelihood
estimation (MLE) and goodness-of-fit testing [5]. Details of
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this fitting procedure are explained in Appendix A. By this
method we correct for problems close to the limits of the
observation windows discarding some experimental data.

Let us justify the use of truncated power-law distributions
for the variables of interest:

f
(i)
X (x)dx = 1 − γi

b
1−γi

i − a
1−γi

i

x−γi dx, where x ∈ [ai,bi]. (1)

By truncated we mean that the power law is truncated from
below and from above, i.e., the power law only holds for the
range ai � x � bi . Standard (usual) power laws are only trun-
cated from below (due to normalization [4]); however, in many
real systems considerable deviations from power-law behavior
appear in the tail of the distributions. Deviations from criticality
can be simply modeled with an exponential tail, as f

(i)
X (x) ∝

e−x/ci /xγi [27]; nevertheless, other factors, such as finite-size
effects [28], or such as saturation (or the combination of them),
may require more sophisticated modeling. A way to avoid the
difficulties in the parametrization of the tail is provided by
(doubly) truncated power laws [5], with an upper cutoff bi

well below the crossover point to the non-power-law tail ci .
Once the particular truncated power-law fits have been done,

one may be able to state that, for the ith catalog, the variable
X follows a power-law PDF f

(i)
X (x; γ̂i ,ai,bi) in a certain range

[ai,bi] with exponent γ̂i and a number n̂i of data entering into
the fit, with n̂i � Ni (for convenience, in the notation we stress
the dependence of the PDF on the parameters). The next step is
to formulate the null hypothesis H0: the variable X is power-
law distributed with a global exponent � for all the catalogs.

The log-likelihood function of this global distribution can
be written as

logL =
ncat∑
i=1

n̂i∑
j=1

log f
(i)
X (xij ; �,ai,bi) (2)

where xij corresponds to the values of the variable X in the
ith catalog, n̂i is the number of data between ai and bi in the
ith catalog, and � is the global exponent. Since the particular
ranges [ai,bi] and the number of data n̂i are known, one has
to find the value of the exponent �̂ that maximizes the log-
likelihood expression in Eq. (2).

Intuitively, one could be tempted to think that the null
hypothesis will not be rejected if the values of the particular
exponents γi do not differ too much. Nevertheless, a more
rigorous treatment is required. Statistical procedures, such as
a permutational test [29], could be used in order to check
whether the exponents are the same or not. However, since
we propose a global distribution characterized by a global
exponent �̂, a goodness-of-fit test for this global distribution
is performed in order to determine whether the null hypothesis
can be rejected or not [4,5]. If the goodness-of-fit test yields a
high enough p value, one is able to state that the variable X is
power-law distributed with exponent �̂ along all the different
catalogs or experiments, with ranges [ai,bi] each. Details of
the global goodness-of-fit test are given in Appendix B. In
this way, if these intervals span different orders of magnitude,
one can increase the power-law range by several decades. An
alternative procedure, where the ranges [ai,bi] are optimized
directly from Eq. (2), is disregarded for being enormously
computer-time consuming.

This methodology is applied to avalanche amplitudes and
energies on AE data in failure-under-compression experiments
of nanoporous silica glasses. Since the experimental setup
records discrete values for the amplitude (in dB) and almost
continuous values of the energy (in aJ), particular expressions
for the log likelihood Eq. (2) as well as the different ways
of implementing the goodness-of-fit test will be explained in
Secs. IV and V.

III. FAILURE UNDER COMPRESSION
OF POROUS GLASSES

Uniaxial compression experiments of porous glass Vycor
(a nanoporous silica glass with 40% porosity) are performed
in a conventional test machine ZMART.PRO (Zwick/Roell).
Cylindrical samples with no lateral confinement are placed be-
tween two plates that approach each other at a certain constant
rate ż. We refer to such a framework as displacement-driven
compression. With the aim of having the same conditions
for all the experiments, samples have the same diameters
� = 4.45mm and heightsH = 8mm, and the compression rate
is fixed at ż = 0.005 mm/min. Before compression, samples
were cleaned following the standard procedure: immersed in a
30% solution of H2O2 over the course of 24 h and dried with a
8-h temperature ramp from room temperature to 130◦C. This
protocol ensures that thirsty porous glass samples are clean
of humidity and other organic impurities. Simultaneous to the
compression, recording of an AE signal is performed by using
a piezoelectric transducer embedded in one of the compression
plates. The electric signal U (t) is preamplified, band filtered
(between 20 kHz and 2 MHz), and analyzed by means of
a PCI-2 acquisition system from Euro Physical Acoustics
(Mistras Group) with an analog-to-digital (AD) card working
at 40 megasamples per second with 18 bits precision [30]. This
should be kept in mind when considering some of the measures
as continuous (energy or voltage). Recording of data stops
when a big failure event occurs and the sample gets destroyed.

We prescribe that an AE avalanche event (often called an AE
hit in specialized AE literature) starts at the time tj when the
signal U (t) crosses a fixed detection threshold and finishes at
time tj + τj when the signal remains below threshold from tj +
τj to at least tj + τj + 200 μs. The amplitude A recorded in dB
follows the expression A = [20 log10 (|V |/V0)], where V is the
peak voltage achieved by the AE signal during the event, V0 =
1 μV is a reference voltage, and the brackets round the value
to its nearest integer in dB. Such a procedure is extensively
used in electronic systems. Note that in our terminology A

will be called amplitude in dB, whereas the peak voltage V

will be referred to simply as amplitude, in agreement with the
literature. From the values of A one can obtain the values y of
the discretized peak voltage:

y = g(A) = V0 × 10A/20. (3)

As the values of A are integer, the values of y will no longer be
integer but they will collapse into a set of values {y1,y2, . . . ,yk}
measured in μV. The energy Ej of each avalanche or event is
determined as Ej = 1

R

∫ tj +τj

tj
U 2(t)dt where R is a reference

resistance of 10 k�. At the end of one experiment, one has
a catalog or collection of events each of them characterized
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FIG. 1. Estimated probability mass functions of the amplitude in dB for the complete datasets of the different experiments performed at
different preamplifications (PRE). Error bars correspond to one standard deviation [5].

by a time of occurrence t , amplitude in dB A, energy E, and
duration τ .

In order to obtain catalogs that span different observation
windows, displacement-driven compression experiments with
Vycor cylinders have been performed for different values of
the preamplification and the detection threshold. In this case,
ncat = 4 experiments have been performed with the following
preamplification values: 60, 40, 20, and 0 dB and the respective
values of the detection threshold 23, 43, 63, and 83 dB referring
to the signal U (t), not the preamplified signal (in such a way
that after preamplification the threshold always moves to 83
dB). These are values of the threshold that are as low as possible
in order to avoid external noise, mostly of electronic origin in
the AD card.

Signal preamplification is necessary if one wants to record
small AE events. Some values of the preamplified signals turn
so large that they cannot be detected correctly by the acquisition
system. This fact leads to a saturation in the amplitude and,
consequently, an underestimated energy of the AE event. This
effect can be immediately observed in the distributions of the
amplitude in dB, Fig. 1, where there is an excess of AE events
in the last bin of amplitudes for the experiments at 60 and 40
dB. Note that the thresholding we perform turns out to be of
the same kind as that in Refs. [31–34].

IV. AMPLITUDES

A. Particular fits

We consider that, for each experiment, the random variable
V corresponding to amplitude (i.e., the peak voltage, the values
of which are denoted by V ) follows a truncated continuous
power-law distribution:

fV (V )dV = 1 − α

V 1−α
max − V 1−α

min

V −αdV, where V ∈ [Vmin,Vmax].

(4)

However, the true value of V is not accessible from the
experiments, and what we have instead is its discretized

counterpartY (the discretized peak voltage, the values of which
are denoted by y), which is concentrated in k discrete values
(but not equispaced). In fact, the values V that the variable V
can take are the real values of the voltages read by the AD card,
but they are transformed into dB, losing precision.

Under the assumption of a power-law distributed V , we are
able to state that the variable Y has probability mass function

fY (y) = P (Y = y)

= P [g(A − 	) � V < g(A + 	)]

= FV [g(A + 	)] − FV [g(A − 	)]

= g1−α(A + 	) − g1−α(A − 	)

V 1−α
max − V 1−α

min

= 2 sinh[2.30(1 − α)	/20]

V 1−α
max − V 1−α

min

1

yα−1
, (5)

where P refers to a probability, y = g(A), 	 = 0.5 dB is a
vicinity around the values of A, 2.30 � log 10, and FV is the
cumulative distribution function obtained from the integration
of Eq. (4). Note that fY (y) is a power law but with exponent
α − 1 because the length of the intervals V is integrated over
increase linearly in y.

The log-likelihood function for a particular experiment can
be written as

logL =
Amax∑

l=Amin

ωl log fY [g(l)]

=
Amax∑

l=Amin

ωl log

(
2 sinh[2.30(1 − α)	/20]

V 1−α
max − V 1−α

min

1

yα−1
l

)
(6)

where yl = g(l), Amin, and Amax are the values of the amplitude
in dB corresponding to the cutoffs imposed on the sample
for the analysis (see Appendix A for further details). The
frequency ωl is the number of events with discretized peak
voltage yl = g(l). The next step consists in finding the value of
α that maximizes Eq. (6) using a numerical method. The values
of the fitted exponent α for different values of Amin andAmax are
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TABLE I. Fitted parameters for Eq. (4) for each particular experiment and for the global fit. α̂ corresponds to the fitted exponent in the range
[Amin,Amax] for which the goodness-of-fit test exceeds the significance level pc = 0.2. Numbers in parentheses correspond to the minimum and
maximum value of the amplitude in dB for each sample. n̂ is the number of data entering into the fit and N is the total number of events in the
dataset. The error of the exponent is computed as the standard deviation of the MLE [5].

PRE (dB) α̂ Amin (dB) Amax (dB) n̂ (N ) p

60 1.743 ± 0.007 32 (23) 78 (79) 21414 (28614) 0.92
40 1.75 ± 0.01 46 (43) 72 (99) 9146 (11717) 0.20
20 1.67 ± 0.04 64 (63) 114 (115) 353 (376) 0.50
0 1.61 ± 0.04 84 (83) 122 (123) 528 (548) 0.64
Global 1.740 ± 0.006 32 (23) 122 (123) 31441 (41255) 0.36

shown in Appendix C by using MLE exponent maps [35]. Once
the exponent is found, one has to determine whether the fit is
appropriate to data or not. All the details concerning the fitting
procedure and the statistical test are given in Appendix A.

In Table I we present the fitted parameters of each par-
ticular experiment: exponents α̂, ranges [Amin,Amax], number
of events n̂ included in the fit, and an estimated p value.
Each experiment detects avalanches within 2.8 decades in
amplitude but all the experiments together would yield a total
range of 5.8 decades. This range is broader than other ranges
of AE amplitudes [13–17,36,37]. It must be mentioned that
performing these particular fits by simply assuming that the
discrete variable Y directly follows a truncated continuous
power law leads to the rejection of this hypothesis in the
goodness-of-fit test.

According to the range of detection for the experiment
performed at 0 dB, one could be able to observe events
up to 139 dB. Nevertheless, the maximum in this sample
corresponds to 123 dB. Under the hypothesis that a power-law
distribution with the same exponent (α̂ = 1.61 ± 0.04) can be
extended for larger values of the amplitude, the probability
P (123 < A < 140 dB) turns out to be P = 0.042. For n̂i =
528 trials, the probability of having no events in this range
can be estimated by (1 − 0.042)528 = 1.4 × 10−10. Based on
these simple calculations, one could justify the existence of a
corner value: a characteristic scale that breaks the power-law
behavior at the tail due to deviations from critical behavior or
to finite-size effects [25]. However, this corner value would be
only visible for the experiment at zero amplification; the same
calculation for the experiment at 20 dB gives a probability
of having no events above the maximum observed of 0.16,
which is not a small probability at all. Some recent works
[25,26] have reached similar conclusions for earthquakes and
for complex networks. Thus it is important to identify and
characterize deviations from power-law tails by means of
appropriate statistical techniques.

B. Global fit

Once the particular fits have been performed, the ranges
for which the power-law hypothesis cannot be rejected are
known for each experiment [Amini ,Amaxi ] (see Table I). For
each catalog i, we have n̂i events that follow the distribution
in Eq. (4) and we assume that there exists a global exponent
α̂g that characterizes a global distribution that includes the
power-law regimes for all the experiments.

Under these assumptions, for the particular case of ampli-
tudes in dB, the general log-likelihood function in Eq. (2) reads

logL =
ncat∑
i=1

Amaxi∑
l=Amini

ωil log f
(i)
Y [g(l)]

=
ncat∑
i=1

Amaxi∑
l=Amini

ωil log

(
2 sinh[2.30(1 − α)	/20]

V 1−α
max − V 1−α

min

1

yα−1
l

)

(7)

where ωil is the number of events with amplitude in dB l in the

ith experiment from a set of ncat catalogs (
∑Amaxi

l=Amini
ωil = n̂i).

After maximization of the log likelihood, the next step
consists in determining whether the null hypothesis of con-
sidering a global exponent α̂g is compatible with the values
of the particular fits shown in Table I. This procedure is
explained in more detail in Appendix B. The global fit yields
a global exponent α̂g = 1.740 ± 0.006 with a p value = 0.36
for N = ∑ncat

i=1 n̂i = 31 441 events. Note that the value of the
global exponent is in agreement with the weighted harmonic
mean:

α̂g = 1.740 � 1 + N∑ncat
i=1

n̂i

α̂i−1

= 1.741

(see Appendix D for a justification of this result). This proce-
dure has been tested over simulated power-law data with the
same parameters as in Table I, yielding acceptable p values.

Figure 2 shows the global PDF for the amplitudes and the
global fit. Observe how the global exponent is valid along 4.5
orders of magnitude, giving an unprecedented broad fitting
range in amplitudes. The procedure to construct this aggregated
histogram is explained in Appendix E. As the estimation of the
probability density is done using bins [5], note that one can
safely replace the unknown values of the random variable V
by the known discretized values of Y . The only requirement is
that the width of the bins is not smaller than the discretization
of Y .

V. ENERGIES

A. Particular fits

Figure 3(a) shows the energy distributions for the complete
dataset of all the experiments performed at different values
of the preamplification. In contrast to the case of amplitudes,
continuous values of the energy are collected. In order to
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FIG. 2. Aggregated probability density of the avalanche amplitude together with a fit with exponent αg = 1.740 ± 0.006, p value = 0.36,
and number of fitted data N = 31441. Error bars are estimated as the standard deviation for each bin [5]. Note that the fit ranges almost five
decades, from g(32 − 	) to g(122 + 	).

properly represent the PDF, data have been binned using a
convenient bin width (see Fig. 3). Due to the problems of
saturation for large amplitudes and the presence of noise for
small amplitudes, the energy corresponding to these events is
not well estimated. In the following analysis we only consider
events the amplitude of which lies in [Vmini ,Vmaxi ], where the
ranges are those that have been found in the particular fits for
amplitude PDF in Table I [see Fig. 3(b)]. We propose that the
energy follows a truncated continuous power-law PDF:

fE (E)dE = 1 − ε

E1−ε
max − E1−ε

min

E−εdE, where E ∈ [Emin,Emax].

(8)
By fixing the values of the range [Emin,Emax] we find the value
of ε that maximizes the following log-likelihood function:

logL = n log

(
1 − ε

E1−ε
max − E1−ε

min

)
− ε

n∑
j=1

log Ej , (9)

where Ej are the particular values of the energy and n is the
number of data in [Emin,Emax]. Note that Emin and Emax do
not have a direct correspondence with Vmin and Vmax. Explicit
details of this particular fit are given in Appendix A. The
values of the fitted exponent ε̂ for different values of Emin

and Emax are shown in Appendix C by using MLE exponent
maps [35]. In Table II we present fitting parameters when the
minimum significance level is set at pc = 0.20. The values of
the exponents are in rough agreement with the one reported in
Ref. [19], in particular the value for 60 dB.

B. Global fit

In order to write the log-likelihood function of the global fit,
it turns out that each experiment contributes with n̂i data which
are distributed according to Eq. (8) in the range [Emini ,Emaxi ]

with a global exponent εg:

logL = N log(1 − εg) − εg

ncat∑
i=1

n̂i∑
j=1

log Eij

−
ncat∑
i=1

n̂i log
(
E

1−εg

maxi − E
1−εg

mini

)
(10)

where n̂i is the number of data in the ith catalog,N = ∑ncat
i n̂i ,

and Eij are the values of the energy in each power-law regime
i. The values of the ranges [Emini ,Emaxi ] are taken from the
particular fits in Table II. Details of the goodness-of-fit test for
this global fit are explained in Appendix B. By considering the
particular ranges shown in Table II, the global fit of the energy
exhibits an exponent ε̂g = 1.352 ± 0.004 (N = ∑ncat

i=1 ,n̂i =
21 836) along more than nine decades. As it happens for the
case of the global amplitude distribution, the value of the
global exponent is in agreement with the weighted harmonic
mean:

ε̂g = 1.352 � 1 + N∑ncat
i=1

n̂i

ε̂i−1

= 1.347.

As we have mentioned, this result is justified in Appendix D.
Nevertheless, this global fit does not fulfil the goodness-

of-fit test and the null hypothesis H0 that all the catalogs
share a common exponent ε̂g is rejected. In Fig. 4 we show
the aggregated empirical probability density for the energy
of the AE events. This histogram has been constructed follow-
ing the procedure explained in Appendix E. Simulated data
with the same parameters as in Table II also yield the same
rejection of the null hypothesis. We have performed the same
analysis without the restriction of just considering events with
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FIG. 3. Estimated energy PDFs for the different experiments performed at different preamplifications (PRE). (a) Complete datasets. (b)
Events with amplitude in the power-law range V ∈ [Vmini ,Vmaxi ]. Vertical bars of the same color as the PDFs and same line style between them
correspond to the power-law ranges listed in Table II. Error bars are estimated as the standard deviation for each bin [5].

amplitude V ∈ [Vmini ,Vmaxi ] or of sparing some catalogs. In all
the cases, the rejection of the null hypothesis occurs.

We can speculate about different distortion factors that
could explain these results.

(1) The first effect comes from a biased measurement of
the energy caused by the dependence of the measured event
duration with the detection threshold. The higher the threshold,

the shorter the duration and the lower the energy since this
corresponds to the integrated (squared) AE signal along the
registered duration. This fact does not occur for the case of
the amplitudes, since these are independent of the value of the
threshold.

(2) A second explanation could be associated to the fact
that for higher thresholds (lower amplifications) some tails of

TABLE II. Fitted parameters for Eq. (8) for each experiment. ε̂ corresponds to the fitted exponent in the range [Emin,Emax] for which the
goodness-of-fit test exceeds the significance level pc = 0.2. n̂ is the number of data entering into the fit and N is the total number of events in
the dataset. Columns 3 and 4 refer to the minimum and maximum energy corresponding to amplitude in the range [Vmini ,Vmaxi ]. Error bars of
the exponent correspond to the standard deviation of the MLE.

PRE (dB) ε̂ Emin (aJ) Emax (aJ) n̂ (N ) p

60 1.360 ± 0.004 4.642 (1.001) 105 (3.005 × 105) 16342 (21414) 0.43

40 1.32 ± 0.02 146.780 (3.133) 6.812 × 103 (9.378 × 104) 4814 (9146) 0.32

20 1.29 ± 0.02 4641.589 (270.446) 2.15 × 109 (1.588 × 109) 284 (353) 0.33

0 1.27 ± 0.02 4.642 × 105 (1.545 × 104) 1010 (9.156 × 109) 396 (528) 0.55

Global 1.352 ± 0.004 4.642 (1.001) 1010 (9.156 × 109) 21836 (31441) 0
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FIG. 4. Aggregated empirical energy PDF for all the experiments. Error bars are estimated as the standard deviation for each bin [5]. The
black solid line corresponds to the fit of the truncated power law with exponent ε̂g = 1.352 in the range [4.642 aJ,1010 aJ].

long fluctuating events are separated into different events, thus
deforming the statistics.

(3) Third, one could also imagine other experimental factors
due to distortions created by the fact that AE transducers have
a certain relaxation time and/or a preferred resonant frequency.

(4) Fourth, there could be distortions in the duration of the
signals due to the propagation of the ultrasounds in the sample.

(5) Finally, the distortion could be associated to real physical
mechanisms in the source of AE events, like frictional losses
that affect signals with different energies in a different way.

Detailed discussion of these effects clearly exceeds the
goals of the present paper.

VI. CONCLUSIONS

In this paper we have presented a methodology to estimate
a global exponent for the PDF of certain avalanche properties
by using different catalogs of events. This methodology has
been applied to amplitudes and energies in AE avalanches
recorded during different compression experiments of porous
glasses. For the case of the amplitude PDF, a global exponent
has been found spanning 4.5 orders of magnitude. To our
knowledge, this is the broadest fitting range that has been
found for the amplitude distribution of AE events. For the
case of the energies, we graphically obtain an apparent power
law spanning 9.5 decades. However, precise statistical analysis
shows that the hypothesis of the existence of a global exponent
for the energy does not hold. Experimental limitations due to
the set of thresholds and definitions of AE avalanches could
justify the rejection of the null hypothesis. We expect this
methodology to be useful to broaden the range of power-law
fits in different distributions that appear in experimental works
in condensed matter physics and in other complex systems, for
instance, earthquakes.
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APPENDIX A: FITTING A TRUNCATED POWER-LAW
DISTRIBUTION TO A DATASET

In this Appendix we present the procedure to fit via MLE
of a probability mass function (PMF) or a PDF to an empirical
dataset of N values {x}. The procedure is essentially the
same as the one in Ref. [5], but we summarize it here for
completeness. The PMF or PDF f (x; γ,a,b) is characterized
by a parameter γ (exponent) and two values for the lower a

and upper b truncations. The first step consists in writing the
log-likelihood function:

logL = log
n∏

i=1

f (xi ; γ,a,b) =
n∑

i=1

log f (xi ; γ,a,b), (A1)

where n is the number of data between a and b. Depending on
whether we are dealing with a PMF or a PDF, one has to use
a different expression of f (x; γ,a,b). Since the values of the
fitting range a and b are not known a priori, 20 partitions
per decade in log scale are used in order to sweep all the
possible intervals [a,b] for the amplitude and six partitions
per decade for the energy. The value of the empirical exponent
γ that maximizes Eq. (A1) is computed for each interval by
means of the function optimize, which is already implemented
in R programming language [38,39]. Once this value is found,
one has to determine through a statistical test whether the fit
is “acceptable” or not. The null hypothesis states that data
{x} are sampled from a truncated power-law distribution with
exponent γ . In order to check whether this null hypothesis is
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rejected or not, the Kolmogorov-Smirnov (KS) distance is used
[40]. The KS statistic measures the maximum distance between
the empirical cumulative distribution function (CDF) Fe (the
subscript e refers to empirical) and the analytic expression F :

de = max |Fe(x; a,b) − F (x; γ,a,b)|. (A2)

Once the value of this distance is known, it is necessary to state
whether its value is large or not compared to those {dsim} found
when the original data are really sampled from a truncated
power-law distribution with exponent γ . In order to perform
this estimation, a number Nsim(Nsim = 1000) of simulations of
n values sampled from f (x; γ,a,b) is done. A fitted exponent
γsim for simulated data is computed by maximizing Eq. (A1)
and a KS distance dsim is found for each simulated dataset. The
p value of the test is estimated as the fraction of observations
where de � dsim. If the p value of the fit exceeds a certain
threshold pc then one considers that the null hypothesis is
accepted (in the sense that it cannot be rejected). From all
the possible intervals the p value of which exceeds pc, the one
with the largest number of data is chosen to yield the right
power-law range with exponent γ̂ .

APPENDIX B: GOODNESS-OF-FIT TEST FOR
GLOBAL DISTRIBUTIONS

Determining whether the null hypothesis of considering
a global exponent � is compatible with the values of the
particular fits has some differences with respect to the case
explained in Appendix A. In this Appendix we detail the
goodness-of-fit test that has been applied to the global fit. First
of all, we need to redefine the KS distance in this case. When
the value of the global exponent �̂ has been found, one can
picture that each dataset that contributes to the global PDF
has been fitted with a global exponent �̂ in their particular
ranges [ai,bi] (i = 1,...,ncat). Therefore ncat KS distances can

be found by

De,i = max |Fe,i(x; ai,bi) − Fi(x; �̂,ai,bi)|, (B1)

where the subindex i refers to the ith catalog,Fe is the empirical
CDF, and F is the analytical CDF. In order to compute a global
KS distance, we perform the following summation:

D =
ncat∑
i=1

√
n̂iDe,i , (B2)

where the factors
√

n̂i are due to the scaling of the KS distance
with the number of data [40]. Once the empirical KS distance
is found, one needs to determine whether this distance is big
or small in relation to the KS distance found for data sampled
from a PDF with the same parameters ai,bi , �̂, and n̂i . Data
are generated in the range given by the particular fit of the
ith catalog with probability qi = n̂i/N , where N = ∑ncat

i=1 n̂i .
Note that the particular number in each simulated dataset is not
necessarily the empirical one n̂i but the total number of data
N is maintained. Hence, one needs a first random number to
choose the dataset i and therefore the range [ai,bi] and a second
one to generate the random truncated power-law number in
that range with exponent �̂ [5]. When N events have been
generated according to this procedure, one finds the global
exponent �̂sim by maximizing the global log likelihood and
computes the global KS distance Dsim for simulated data. By
performing several realizations of the previous procedure, one
can estimate the p value of the fit by computing the fraction
of simulated datasets where the simulated global KS distance
is larger than the empirical one.

APPENDIX C: MLE EXPONENT MAPS

In order to complement the information of the particular
fits, we show the MLE exponent maps. These maps show the
value of the exponent of a truncated power law as a function
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FIG. 5. MLE exponent maps for the distribution of amplitudes in dB of every experiment. Red-squared points indicate the values of the
exponent and the upper and lower truncations found in Table I in the main text. White gaps correspond to regions that are out of the color range
that appears at the right of each map. Black solid lines correspond to the maximum and minimum values in the sample.
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FIG. 6. MLE exponent maps for the energy for each experiment. Green-squared points indicate the values of the exponent and the upper
and lower truncations found in Table II in the main text. White gaps correspond to regions that are out of the color range that appears at the
right of each map. Black solid lines correspond to the maximum and minimum values in the sample.

of the values of the upper and lower truncations. This kind
of representation is useful since it gives information about
how stable is the value of the exponent as the truncations
of the power-law fit change. In Figs. 5 and 6 we show the
MLE exponent maps for the case of the amplitudes in dB and
energy, respectively. Due to the condition that the variable X
must fulfil xmin � xmax for the upper and lower truncations,
the maps exhibits a triangular shape. The points in each map
show the upper and lower truncations as well as the exponent of
the fit which has been done according to the fitting procedure
explained in Appendix A. As it can be observed, this fit is
placed in uniform-colored regions of the map.

APPENDIX D: GLOBAL EXPONENT

In this Appendix we expand Eq. (2) for a nontruncated
power-law PDF in order to relate the global exponent with
the particular ones. Let us consider ncat catalogs with n̂i events
characterized by a variable X . We propose that for the ith
catalog data follow a power law with exponent γi from a lower
cutoff ai to ∞:

f
(i)
X (x) = γi − 1

a
1−γi

i

x−γi . (D1)

By finding the value of the particular exponent that maximizes
the log-likelihood expression in Eq. (A1) we obtain [4,5]

γ̂i = 1 + n̂i∑n̂i

j=1 log(xj/a)
. (D2)

Now we consider that data in these ncat catalogs follow PDFs
with different cutoffs ai but sharing a global exponent �. If
we bring these PDFs to the global log likelihood of Eq. (2),

we obtain

logL =
ncat∑
i=1

n̂i log(� − 1) +
ncat∑
i=1

n̂i(� − 1) log ai

−�

ncat∑
i=1

n̂i∑
j=1

log xj . (D3)

By deriving this expression with respect to � and making the
result equal to zero, we can obtain the value of the global
exponent that maximizes the log likelihood:

�̂ = 1 + N∑ncat
i=1

∑n̂i

j=1 log(xj/ai)
. (D4)

We can relate this global exponent � with the particular
exponents from Eq. (D2) leading to

N
�̂ − 1

=
ncat∑
i=1

n̂i

γ̂i − 1
. (D5)

Hence, for the case of nontruncated power-law PDFs, the
global exponent is related to the weighted harmonic mean of
γi − 1. For truncated power laws, if the range is sufficiently
big, one expects this result to provide a good approximation.

APPENDIX E: AGGREGATED GLOBAL HISTOGRAM

We would like to represent a global histogram of a certain
variable X that is sampled from ncat datasets, each dataset
in a different domain (or different support, in probabilistic
language), but assuming a common underlying distribution.
Obviously, the difference in the domains will lead to bumps
and irregularities if all data are taken together into a simple his-
togram. As an example, two overlapping histograms are shown
in Fig. 7 sampled from a uniform distribution (the total domain
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FIG. 7. Histogram 1 of 2.5 × 104 numbers sampled from a uniform distribution in (0,1), together with the histogram 2 of 2.5 × 104 numbers
sampled from another uniform distribution in (0.5,1.5). The (naive) sum of these histograms (1 + 2) is also shown, where an excess of counts
can be appreciated in the intersection region.

of which is supposedly unknown), restricted to the interval
(0,1) for histogram 1 and to (0.5,1.5) for histogram 2. We are
going to construct a single histogram without the anomalies
that arise in the different regions if a naive procedure is used.
Our procedure is independent of the shape of the histogram
(a convenient change of variable can transform any distribution
into a uniform one, without affecting the procedure; this is the
reason to use the uniform example in Fig. 7).

Let us start with two datasets, 1 and 2, and let m1 be the
number of data from dataset 1 overlapping with dataset 2 and
let m2 be the number of data from dataset 2 overlapping with
dataset 1, where by overlapping we mean that the points belong
to the intersection of both domains. Instead of associating a data
point to one count we consider that each data point contributes
to the global histogram proportionally to the inverse of the

“sample intensity,” to be concrete, nonoverlapping data from
datasets 1 and 2 contributing to the global histogram with 1

m1

and 1
m2

, respectively, whereas the overlapping data contribute

with 1
m1+m2

. The latter assumption comes from the fact that if

we used 1
mi

for the overlapping data from dataset 1 we would
obtain a histogram twice as high as it should be (due precisely to
the overlapping). Weighting each contribution by mi

m1+m2
leads

to the 1
m1+m2

value. After this rescaling, datasets 1 and 2 are
assembled in a single (smooth) histogram 1 + 2.

In order to add a new dataset 3, we proceed recursively. We
need to evaluate the contribution of 1 + 2 that overlaps with
dataset 3. We define m12 as the number of data of dataset 1 or
2 overlapping with dataset 3, and we define the weight ρ12 of
this overlapping region as

ρ12 = 1

m1
+ · · · + 1

m1
+ 1

(m1 + m2)
+ · · · + 1

(m1 + m2)
+ 1

m2
+ . . .

1

m2︸ ︷︷ ︸
m12terms

,

where the three different terms in the sum come from the data in
dataset 1 that do not overlap with dataset 2, the data in dataset 1
that overlap with dataset 2 or vice versa, and the data in dataset
2 that do not overlap with dataset 1, respectively (and with all of
them overlapping with dataset 3). In order to compare properly
the histogram 1 + 2 with dataset 3, the former should come
with a weight m12 (instead of ρ12), so we rescale the former
by the factor m12

ρ12
. In this way, the histogram from 1 + 2 turns

out to have the different contributions m12
m1ρ12

, m12
(m1+m2)ρ12

, and
m12

m2ρ12
(depending on which part of the domain each data point

comes from). The next step consists in applying the original
procedure to 1 + 2 and dataset 3, thus rescaling in each case by

1
m12

, 1
m12+m3

, or 1
m3

, where m3 refers to the number of data from
dataset 3 overlapping with 1 + 2 (i.e., with dataset 1 or 2). To
be precise, data points from the already assembled histogram
1 + 2 not overlapping with dataset 3 contribute introducing the
extra factor 1

m12
, yielding

1

m1ρ12
,

1

(m1 + m2)ρ12
,

1

m2ρ12
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for each case; the overlapping data points contribute 1
(m12+m3) , yielding

m12

m1(m12 + m3)ρ12
,

m12

(m1 + m2)(m12 + m3)ρ12
,

m12

m2(m12 + m3)ρ12

if the data point came from dataset 1 or 2, and 1
m12+m3

if they
come from dataset 3; nonoverlapping data points from the new
dataset 3 contribute 1

m3
.

One can iterate this procedure in order to add as many
datasets as necessary. In any case, note that one can only add
datasets that overlap, as the overlapping region is used as a
way of “calibration.” So, the order in which the aggregation
is performed is important (in our catalogs of amplitudes, the
datasets for 0 and 60 dB cannot be aggregated directly, as

they do not overlap, but they can be aggregated after one of
them is previously aggregated with the datasets for 20 and
40 dB). In general, in order to have an estimation of a PDF,
rescaled counts must be divided by the bin width of each bin
and, secondly, the resulting histogram has to be divided by its
integral over the full domain in order to fulfil normalization. For
a probability mass function, one has to divide by the sum of the
histogram values. Error bars are subject to the same rescaling
transformations.
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