115 research outputs found

    A large population-based investigation into the genetics of susceptibility to gastrointestinal infections and the link between gastrointestinal infections and mental illness.

    Get PDF
    Gastrointestinal infections can be life threatening, but not much is known about the host's genetic contribution to susceptibility to gastrointestinal infections or the latter's association with psychiatric disorders. We utilized iPSYCH, a genotyped population-based sample of individuals born between 1981 and 2005 comprising 65,534 unrelated Danish individuals (45,889 diagnosed with mental disorders and 19,645 controls from a random population sample) in which all individuals were linked utilizing nationwide population-based registers to estimate the genetic contribution to susceptibility to gastrointestinal infections, identify genetic variants associated with gastrointestinal infections, and examine the link between gastrointestinal infections and psychiatric and neurodevelopmental disorders. The SNP heritability of susceptibility to gastrointestinal infections ranged from 3.7% to 6.4% on the liability scale. Significant correlations were found between gastrointestinal infections and the combined group of mental disorders (OR = 2.09; 95% CI: 1.82-2.4, P = 1.87 × 10-25). Correlations with autism spectrum disorder, attention deficit hyperactivity disorder, and depression were also significant. We identified a genome-wide significant locus associated with susceptibility to gastrointestinal infections (OR = 1.13; 95% CI: 1.08-1.18, P = 2.9 × 10-8), where the top SNP was an eQTL for the ABO gene. The risk allele was associated with reduced ABO expression, providing, for the first time, genetic evidence to support previous studies linking the O blood group to gastrointestinal infections. This study also highlights the importance of integrative work in genetics, psychiatry, infection, and epidemiology on the road to translational medicine

    Spatial fine-mapping for gene-by-environment effects identifies risk hot spots for schizophrenia.

    Get PDF
    Spatial mapping is a promising strategy to investigate the mechanisms underlying the incidence of psychosis. We analyzed a case-cohort study (n = 24,028), drawn from the 1.47 million Danish persons born between 1981 and 2005, using a novel framework for decomposing the geospatial risk for schizophrenia based on locale of upbringing and polygenic scores. Upbringing in a high environmental risk locale increases the risk for schizophrenia by 122%. Individuals living in a high gene-by-environmental risk locale have a 78% increased risk compared to those who have the same genetic liability but live in a low-risk locale. Effects of specific locales vary substantially within the most densely populated city of Denmark, with hazard ratios ranging from 0.26 to 9.26 for environment and from 0.20 to 5.95 for gene-by-environment. These findings indicate the critical synergism of gene and environment on the etiology of schizophrenia and demonstrate the potential of incorporating geolocation in genetic studies

    Genome-wide association study of school grades identifies genetic overlap between language ability, psychopathology and creativity

    Get PDF
    Cognitive functions of individuals with psychiatric disorders differ from that of the general population. Such cognitive differences often manifest early in life as differential school performance and have a strong genetic basis. Here we measured genetic predictors of school performance in 30,982 individuals in English, Danish and mathematics via a genome-wide association study (GWAS) and studied their relationship with risk for six major psychiatric disorders. When decomposing the school performance into math and language-specific performances, we observed phenotypically and genetically a strong negative correlation between math performance and risk for most psychiatric disorders. But language performance correlated positively with risk for certain disorders, especially schizophrenia, which we replicate in an independent sample (n = 4547). We also found that the genetic variants relating to increased risk for schizophrenia and better language performance are overrepresented in individuals involved in creative professions (n = 2953) compared to the general population (n = 164,622). The findings together suggest that language ability, creativity and psychopathology might stem from overlapping genetic roots.Peer reviewe

    The Norwegian Mother, Father, and Child cohort study (MoBa) genotyping data resource: MoBaPsychGen pipeline v.1

    Get PDF
    BACKRGROUND: The Norwegian Mother, Father, and Child Cohort Study (MoBa) is a population-based pregnancy cohort, which includes approximately 114,500 children, 95,200 mothers, and 75,200 fathers. Genotyping of MoBa has been conducted through multiple research projects, spanning several years; using varying selection criteria, genotyping arrays, and genotyping centres. MoBa contains numerous interrelated families, which necessitated the implementation of a family-based quality control (QC) pipeline that verifies and accounts for diverse types of relatedness. METHODS: The MoBaPsychGen pipeline, comprising pre-imputation QC, phasing, imputation, and post-imputation QC, was developed based on current best-practice protocols and implemented to account for the complex structure of the MoBa genotype data. The pipeline includes QC on both single nucleotide polymorphism (SNP) and individual level. Phasing and imputation were performed using the publicly available Haplotype Reference Consortium release 1.1 panel as a reference. Information from the Medical Birth Registry of Norway and MoBa questionnaires were used to identify biological sex, year of birth, reported parent-offspring (PO) relationships, and multiple births (only available in the offspring generation). RESULTS: In total, 207,569 unique individuals (90% of the unique individuals included in the study) and 6,981,748 SNPs passed the MoBaPsychGen pipeline. The relatedness checks performed throughout the pipeline allowed identification of within-generation and across-generation first-degree, second-degree, and third-degree relatives. The individuals passing post-imputation QC comprised 64,471 families ranging in size from singletons to 84 unique individuals (singletons are included as families as other family members may not have been genotyped, imputed, or passed post-imputation QC). The relationships identified include 287 monozygotic twin pairs, 22,884 full siblings, 117,004 PO pairs, 23,299 second-degree relative pairs, and 10,828 third-degree relative pairs. DISCUSSION: MoBa contains a highly complex relatedness structure, with a variety of family structures including singletons, PO duos, full (mother, father, child) PO trios, nuclear families, blended families, and extended families. The availability of robustly quality-controlled genetic data for such a large cohort with a unique extended family structure will allow many novel research questions to be addressed. Furthermore, the MoBaPsychGen pipeline has potential utility in similar cohorts

    Polygenic profiles define aspects of clinical heterogeneity in attention deficit hyperactivity disorder

    Get PDF
    Attention deficit hyperactivity disorder (ADHD) is a complex disorder that manifests variability in long-term outcomes and clinical presentations. The genetic contributions to such heterogeneity are not well understood. Here we show several genetic links to clinical heterogeneity in ADHD in a case-only study of 14,084 diagnosed individuals. First, we identify one genome-wide significant locus by comparing cases with ADHD and autism spectrum disorder (ASD) to cases with ADHD but not ASD. Second, we show that cases with ASD and ADHD, substance use disorder and ADHD, or first diagnosed with ADHD in adulthood have unique polygenic score (PGS) profiles that distinguish them from complementary case subgroups and controls. Finally, a PGS for an ASD diagnosis in ADHD cases predicted cognitive performance in an independent developmental cohort. Our approach uncovered evidence of genetic heterogeneity in ADHD, helping us to understand its etiology and providing a model for studies of other disorders

    Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes

    Get PDF
    Febrile seizures represent the most common type of pathological brain activity in young children and are influenced by genetic, environmental and developmental factors. In a minority of cases, febrile seizures precede later development of epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases and 83 966 controls identifying and replicating seven new loci, all with P < 5 x 10(-10). Variants at two loci were functionally related to altered expression of the fever response genes PTGER3 and IL10, and four other loci harboured genes (BSN, ERC2, GABRG2, HERC1) influencing neuronal excitability by regulating neurotransmitter release and binding, vesicular transport or membrane trafficking at the synapse. Four previously reported loci (SCN1A, SCN2A, ANO3 and 12q21.33) were all confirmed. Collectively, the seven novel and four previously reported loci explained 2.8% of the variance in liability to febrile seizures, and the single nucleotide polymorphism heritability based on all common autosomal single nucleotide polymorphisms was 10.8%. GABRG2, SCN1A and SCN2A are well-established epilepsy genes and, overall, we found positive genetic correlations with epilepsies (r(g) = 0.39, P = 1.68 x 10(-4)). Further, we found that higher polygenic risk scores for febrile seizures were associated with epilepsy and with history of hospital admission for febrile seizures. Finally, we found that polygenic risk of febrile seizures was lower in febrile seizure patients with neuropsychiatric disease compared to febrile seizure patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date implicates central fever response genes as well as genes affecting neuronal excitability, including several known epilepsy genes. Further functional and genetic studies based on these findings will provide important insights into the complex pathophysiological processes of seizures with and without fever.Peer reviewe

    A saturated map of common genetic variants associated with human height

    Get PDF
    &lt;p&gt;Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes&lt;sup&gt;1&lt;/sup&gt;. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel&lt;sup&gt;2&lt;/sup&gt;) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.&lt;/p&gt;Peer reviewe

    Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration

    Get PDF
    The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined P= 3.96 x 10(-14)). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.Peer reviewe

    GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores

    Get PDF
    Objective: More than 90% of people who attempt suicide have a psychiatric diagnosis;however, twin and family studies suggest that the genetic etiology of suicide attempt is partially distinct from that of the psychiatric disorders themselves. The authors present the largest genome-wide association study (GWAS) on suicide attempt, using cohorts of individuals with major depressive disorder, bipolar disorder, and schizophrenia from the Psychiatric Genomics Consortium. Methods: The samples comprised 1,622 suicide attempters and 8,786 nonattempters with major depressive disorder;3,264 attempters and 5,500 nonattempters with bipolar disorder;and 1,683 attempters and 2,946 nonattempters with schizophrenia. A GWAS on suicide attempt was performed by comparing attempters to nonattempters with each disorder, followed by a meta-analysis across disorders. Polygenic risk scoring was used to investigate the genetic relationship between suicide attempt and the psychiatric disorders. Results: Three genome-wide significant loci for suicide attempt were found: one associated with suicide attempt in major depressive disorder, one associated with suicide attempt in bipolar disorder, and one in the meta-analysis of suicide attempt in mood disorders. These associations were not replicated in independent mood disorder cohorts from the UK Biobank and iPSYCH. No significant associations were found in the meta-analysis of all three disorders. Polygenic risk scores for major depression were significantly associated with suicide attempt in major depressive disorder (R-2=0.25%), bipolar disorder (R-2=0.24%), and schizophrenia (R-2=0.40%). Conclusions: This study provides new information on genetic associations and demonstrates that genetic liability for major depression increases risk for suicide attempt across psychiatric disorders. Further collaborative efforts to increase sample size may help to robustly identify genetic associations and provide biological insights into the etiology of suicide attempt
    corecore