114 research outputs found

    Modeling a Slicer Mirror Using Zemax User-Defined Surface

    Full text link
    A slicer mirror is a complex surface composed by many tilted and decentered mirrors sub-surfaces. The major difficulty to model such a complex surface is the large number of parameters used to define it. The Zemax's multi-configuration mode is usually used to specify each parameters (tilts, curvatures, decenters) for each mirror sub-surface which are then considered independently. Otherwise making use of the User-Defined Surface (UDS-DLL) Zemax capability, we are able to consider the set of sub-surfaces as a whole surface. In this paper, we present such a UDS-DLL tool comparing its performance with those of the classical multi-configuration mode. In particular, we explore the use of UDS-DLL to investigate the cross-talk due to the diffraction on the slicer array mirrors which has been a burden task when using multi-configuration mode.Comment: Submitted to the proceedings of the Durham Integral Field Spectroscopy Workshop July 4th-8th 200

    Measurement of residual nucleus cross sections and recoil energies in p + Fe collisions at 300, 500, 750, 1000 and 1500 MeV

    Get PDF
    The production of residual nuclei in p + Fe collisions has been measured at GSI on the FRS facility by means of the reverse kinematic techniques at 300, 500, 750, 1000 and 1500 MeV/A. The cross-sections larger than 0.01 mb of all isotopes with Z larger than 8 have been obtained. Velocity distributions were also measured. Comparisons to models describing spallation reactions and some empirical formulae often used in astrophysics are presented. These data are directly used to calculate impurety production and DPAs in a thin window as foreseen in spallation sources or accelerator-driven systems

    Spallation Residues in the Reaction 56Fe + p at 0.3, 0.5, 0.75, 1.0 and 1.5 A GeV

    Get PDF
    The spallation residues produced in the bombardment of 56}Fe at 1.5, 1.0, 0.75, 0.5 and 0.3 A GeV on a liquid-hydrogen target have been measured using the reverse kinematics technique and the Fragment Separator at GSI (Darmstadt). This technique has permitted the full identification in charge and mass of all isotopes produced with cross-sections larger than 10^{-2} mb down to Z=8. Their individual production cross-sections and recoil velocities at the five energies are presented. Production cross-sections are compared to previously existing data and to empirical parametric formulas, often used in cosmic-ray astrophysics. The experimental data are also extensively compared to different combinations of intra-nuclear cascade and de-excitation models. It is shown that the yields of the lightest isotopes cannot be accounted for by standard evaporation models. The GEMINI model, which includes an asymmetric fission decay mode, gives an overall good agreement with the data. These experimental data can be directly used for the estimation of composition modifications and damages in materials containing iron in spallation sources. They are also useful for improving high precision cosmic-ray measurements.Comment: Submited to Phys. Rev. C (10/2006

    New Measurements of Fragmentation Cross Sections from ^(56)Fe and ^(60)Ni Beams at Energies Relevant to Galactic Cosmic-Ray Propagation

    Get PDF
    Models of cosmic-ray propagation in the Galaxy rely heavily on knowledge of the nuclear fragmentation cross sections which govern spallation of heavy nuclei in the interstellar medium. Interpretation of high-precision cosmic-ray composition data such as those from the ACE and Ulysses missions requires improved cross-section data. New measurements of partial fragmentation cross sections have been made with high statistical accuracy at the GSI heavy ion synchrotron (SIS) using ^(56)Fe beams at five energies between 300 and 1500 MeV/nucleon, and 60 Ni beams at 500 and 1000 MeV/nucleon, on a liquid hydrogen target. We report on progress in analyzing these data

    Dynamic Measurements of Membrane Insertion Potential of Synthetic Cell Penetrating Peptides

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/la403370p.Cell penetrating peptides (CPPs) have been established as excellent candidates for mediating drug delivery into cells. When designing synthetic CPPs for drug delivery applications, it is important to understand their ability to penetrate the cell membrane. In this paper, anionic or zwitterionic phospholipid monolayers at the air-water interface are used as model cell membranes to monitor the membrane insertion potential of synthetic CPPs. The insertion potential of CPPs having different cationic and hydrophobic amino acids were recorded using a Langmuir monolayer approach that records peptide adsorption to model membranes. Fluorescence microscopy was used to visualize alterations in phospholipid packing due to peptide insertion. All CPPs had the highest penetration potential in the presence of anionic phospholipids. In addition, two of three amphiphilic CPPs inserted into zwitterionic phospholipids, but none of the hydrophilic CPPs did. All the CPPs studied induced disruptions in phospholipid packing and domain morphology, which were most pronounced for amphiphilic CPPs. Overall, small changes to amino acids and peptide sequences resulted in dramatically different insertion potentials and membrane reorganization. Designers of synthetic CPPs for efficient intracellular drug delivery should consider small nuances in CPP electrostatic and hydrophobic properties

    A high-throughput synthetic platform enables the discovery of proteomimetic cell penetrating peptides and bioportides

    Get PDF
    Collectively, cell penetrating peptide (CPP) vectors and intrinsically active bioportides possess tremendous potential for drug delivery applications and the discrete modulation of intracellular targets including the sites of protein–protein interactions (PPIs). Such sequences are usually relatively short (< 25 AA), polycationic in nature and able to access the various intracellular compartments of eukaryotic cells without detrimental influences upon cellular biology. The high-throughput platform for bioportide discovery described herein exploits the discovery that many human proteins are an abundant source of potential CPP sequences which are reliably predicted using QSAR algorithms or other methods. Subsequently, microwave-enhanced solid phase peptides synthesis provides a high-throughput source of novel proteomimetic CPPs for screening purposes. By focussing upon cationic helical domains, often located within the molecular interfaces that facilitate PPIs, bioportides which act by a dominant-negative mechanism at such sites can be reliably identified within small number libraries of CPPs. Protocols that employ fluorescent peptides, routinely prepared by N-terminal acylation with carboxytetramethylrhodamine, further enable both the quantification of cellular uptake kinetics and the identification of specific site(s) of intracellular accretion. Chemical modifications of linear peptides, including strategies to promote and stabilise helicity, are compatible with the synthesis of second-generation bioportides with improved drug-like properties to further exploit the inherent selectivity of biologics

    Potent Inhibition of HIV-1 Replication by a Tat Mutant

    Get PDF
    Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection

    Glycosaminoglycans: What Remains To Be Deciphered?

    Get PDF
    Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise “glycocodes” that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (e.g., ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics

    CNS Delivery Via Adsorptive Transcytosis

    Get PDF
    Adsorptive-mediated transcytosis (AMT) provides a means for brain delivery of medicines across the blood-brain barrier (BBB). The BBB is readily equipped for the AMT process: it provides both the potential for binding and uptake of cationic molecules to the luminal surface of endothelial cells, and then for exocytosis at the abluminal surface. The transcytotic pathways present at the BBB and its morphological and enzymatic properties provide the means for movement of the molecules through the endothelial cytoplasm. AMT-based drug delivery to the brain was performed using cationic proteins and cell-penetrating peptides (CPPs). Protein cationization using either synthetic or natural polyamines is discussed and some examples of diamine/polyamine modified proteins that cross BBB are described. Two main families of CPPs belonging to the Tat-derived peptides and Syn-B vectors have been extensively used in CPP vector-mediated strategies allowing delivery of a large variety of small molecules as well as proteins across cell membranes in vitro and the BBB in vivo. CPP strategy suffers from several limitations such as toxicity and immunogenicity—like the cationization strategy—as well as the instability of peptide vectors in biological media. The review concludes by stressing the need to improve the understanding of AMT mechanisms at BBB and the effectiveness of cationized proteins and CPP-vectorized proteins as neurotherapeutics
    corecore