1,798 research outputs found

    The secret of success

    Get PDF
    Parts of Antarctica have experienced warming almost an order of magnitude greater than the global average over the past 50 years, with the Antarctic Peninsula ranking among the three fastest-warming regions on Earth. Antarctic ecosystems have been affected by the warming that has taken place. Perhaps the most notable impact has been a dramatic expansion of the two species of flowering plant that occur on the continent \u2014 Antarctic pearlwort and Antarctic hair gras

    Using indirect methods to constrain symbiotic nitrogen fixation rates : a case study from an Amazonian rain forest

    Get PDF
    © The Authors 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biogeochemistry 99 (2010): 1-13, doi:10.1007/s10533-009-9392-y.Human activities have profoundly altered the global nitrogen (N) cycle. Increases in anthropogenic N have had multiple effects on the atmosphere, on terrestrial, freshwater and marine ecosystems, and even on human health. Unfortunately, methodological limitations challenge our ability to directly measure natural N inputs via biological N fixation (BNF)—the largest natural source of new N to ecosystems. This confounds efforts to quantify the extent of anthropogenic perturbation to the N cycle. To address this gap, we used a pair of indirect methods—analytical modeling and N balance—to generate independent estimates of BNF in a presumed hotspot of N fixation, a tropical rain forest site in central Rondônia in the Brazilian Amazon Basin. Our objectives were to attempt to constrain symbiotic N fixation rates in this site using indirect methods, and to assess strengths and weaknesses of this approach by looking for areas of convergence and disagreement between the estimates. This approach yielded two remarkably similar estimates of N fixation. However, when compared to a previously published bottom-up estimate, our analysis indicated much lower N inputs via symbiotic BNF in the Rondônia site than has been suggested for the tropics as a whole. This discrepancy may reflect errors associated with extrapolating bottom-up fluxes from plot-scale measures, those resulting from the indirect analyses, and/or the relatively low abundance of legumes at the Rondônia site. While indirect methods have some limitations, we suggest that until the technological challenges of directly measuring N fixation are overcome, integrated approaches that employ a combination of model-generated and empirically-derived data offer a promising way of constraining N inputs via BNF in natural ecosystems.We acknowledge and are grateful for financial support from the Andrew W. Mellon Foundation (C.C. and B.H.), the National Science Foundation (NSF DEB-0515744 to C.C. and A.T. and DEB-0315656 to C.N.), and the NASA LBA Program (NCC5-285 to C.N.)

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    A systematic review of adaptive wildlife management for the control of invasive, non-native mammals, and other human–wildlife conflicts

    Get PDF
    1.We are entering an era where species declines are occurring at their fastest ever rate, and the increased spread of non-native species is among the top causes. High uncertainty in biological processes makes the accurate prediction of the outcomes of management interventions very challenging. Adaptive management (AM) offers solutions to reduce uncertainty and improve predictability so that the outcomes of interventions can continuously improve. 2.We quantitatively assess the extent to which AM is used for managing vertebrates, with a focus on invasive non-native species (INNS). Using the Web of Science, we evaluated 3992 articles returned by the search terms ‘adaptive management’ or ‘adaptive harvest management’ against seven recommended elements of AM (engagement with stakeholders, defining objectives, forecasting and estimating uncertainty, implementing management, monitoring populations, adjusting management in response to monitoring, and improving forecasting and reducing uncertainty in response to monitoring populations). 3.The use of AM for vertebrates was reported in 56 (1%) of the evaluated studies; including four for managing INNS. Of these, ten studies excluding INNS and no studies of INNS management implemented all seven recommended elements of AM. Those elements infrequently implemented were: the use of analysis or models to forecast and represent uncertainty (44%) and the feedback of monitoring data to improve forecasting and reduce uncertainty (25%). 4.Complete active AM has rarely been implemented and reported for managing INNS, despite the significant advantages it offers. Among studies purporting to have implemented AM, most did not use analyses or models to forecast and represent uncertainty, while most defined objectives, implemented management, and monitored populations.5.Improvements to ongoing control programmes and much broader adoption of the AM approach are required to increase the efficiency and success of INNS management campaigns and reduce their negative impacts on native species

    The environmental impact of climate change adaptation on land use and water quality

    Get PDF
    Encouraging adaptation is an essential aspect of the policy response to climate change1. Adaptation seeks to reduce the harmful consequences and harness any beneficial opportunities arising from the changing climate. However, given that human activities are the main cause of environmental transformations worldwide2, it follows that adaptation itself also has the potential to generate further pressures, creating new threats for both local and global ecosystems. From this perspective, policies designed to encourage adaptation may conflict with regulation aimed at preserving or enhancing environmental quality. This aspect of adaptation has received relatively little consideration in either policy design or academic debate. To highlight this issue, we analyse the trade-offs between two fundamental ecosystem services that will be impacted by climate change: provisioning services derived from agriculture and regulating services in the form of freshwater quality. Results indicate that climate adaptation in the farming sector will generate fundamental changes in river water quality. In some areas, policies that encourage adaptation are expected to be in conflict with existing regulations aimed at improving freshwater ecosystems. These findings illustrate the importance of anticipating the wider impacts of human adaptation to climate change when designing environmental policies

    Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering.

    Get PDF
    Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO2) and nitrous oxide (N2O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils-applying crushed silicate rock as a soil amendment-is a method for combating global climate change while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to sequester carbon (C), and reduces N2O loss through pH buffering. As biofuel use increases, EW in bioenergy crops offers the opportunity to sequester CO2 while reducing fossil fuel combustion. Uncertainties remain in the long-term effects and global implications of large-scale efforts to directly manipulate Earth's atmospheric CO2 composition, but EW in agricultural lands is an opportunity to employ these soils to sequester atmospheric C while benefitting crop production and the global climate

    On the origin of the invasive olives (Olea europaea L., Oleaceae).

    Get PDF
    The olive tree (Olea europaea) has successfully invaded several regions in Australia and Pacific islands. Two olive subspecies (subspp. europaea and cuspidata) were first introduced in these areas during the nineteenth century. In the present study, we determine the origin of invasive olives and investigate the importance of historical effects on the genetic diversity of populations. Four invasive populations from Australia and Hawaii were characterized using eight nuclear DNA microsatellites, plastid DNA markers as well as ITS-1 sequences. Based on these data, their genetic similarity with native populations was investigated, and it was determined that East Australian and Hawaiian populations (subsp. cuspidata) have originated from southern Africa while South Australian populations (subsp. europaea) have mostly derived from western or central Mediterranean cultivars. Invasive populations of subsp. cuspidata showed significant loss of genetic diversity in comparison to a putative source population, and a recent bottleneck was evidenced in Hawaii. Conversely, invasive populations of subsp. europaea did not display significant loss of genetic diversity in comparison to a native Mediterranean population. Different histories of invasion were inferred for these two taxa with multiple cultivars introduced restoring gene diversity for europaea and a single successful founder event and sequential introductions to East Australia and then Hawaii for cuspidata. Furthermore, one hybrid (cuspidata x europaea) was identified in East Australia. The importance of hybridizations in the future evolution of the olive invasiveness remains to be investigated
    corecore