7 research outputs found

    Galaxy pairs in the SDSS - XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers.

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≤ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios ≤4, projected separations r p ≤ 30 kpc and velocity separations ΔV ≤ 300 km s -1, and have been selected to exhibit enhanced specific star formation rates (sSFRs). We calculate molecular gas (H 2) masses, assigning to each galaxy a physically motivated conversion factor αCO, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS; Saintonge et al.) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H 2 masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.Peer reviewe

    The MALATANG Survey : The L GAS-L IR Correlation on Sub-kiloparsec Scale in Six Nearby Star-forming Galaxies as Traced by HCN J = 4 → 3 and HCO + J = 4 → 3

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-4357/aac512.We present HCN J = 4→3 and HCO+ J = 4→3 maps of six nearby star-forming galaxies, NGC 253, NGC 1068, IC 342, M82, M83, and NGC 6946, obtained with the James Clerk Maxwell Telescope as part of the MALATANG survey. All galaxies were mapped in the central 2×2 region at 14 (FWHM) resolution (corresponding to linear scales of ∼0.2-1.0 kpc). The LIR-Ldense relation, where the dense gas is traced by the HCN J = 4→3 and the HCO+ J = 4→3 emission, measured in our sample of spatially resolved galaxies is found to follow the linear correlation established globally in galaxies within the scatter. We find that the luminosity ratio, LIR/Ldense, shows systematic variations with LIR within individual spatially resolved galaxies, whereas the galaxy-integrated ratios vary little. A rising trend is also found between LIR/Ldense ratio and the warm-dust temperature gauged by the 70 μm/100 μm flux ratio. We find that the luminosity ratios of IR/HCN (4-3) and IR/HCO+ (4-3), which can be taken as a proxy for the star formation efficiency (SFE) in the dense molecular gas (SFE dense), appear to be nearly independent of the dense gas fraction ( f dense) for our sample of galaxies. The SFE of the total molecular gas (SFEmol) is found to increase substantially with f dense when combining our data with those on local (ultra)luminous infrared galaxies and high-z quasars. The mean LHCN(4-3) LHCO+(4-3) line ratio measured for the six targeted galaxies is 0.9±0.6. No significant correlation is found for the L'HCN(4-3) L'HCO+(4-3) ratio with the star formation rate as traced by L IR, nor with the warm-dust temperature, for the different populations of galaxies.Peer reviewe

    Mid-IR Selected z ~ 2 Type-2 QSOs: Obscured Star-Forming Young Quasars?

    No full text
    Star formation and obscuration in AGN: A sub-mm study of high-redshift mid-IR selected type-2 QSOs. The AGN unification model describes unobscured and obscured AGN (AGN1 and AGN2) as identical sources, with their different observed properties explained solely by orientation effects; as a result, it predicts no difference in the host galaxies. As an alternative, a second scenario has been proposed in which type-2 AGN represent an earlier stage in the life of AGN characterized by dust- enshrouded host galaxies which contribute to the obscuration and higher star formation activity, at least at earlier epochs. To test this scenario we employ Herschel data at three different wavelengths (250, 350, 500 um) to study the far-IR-to-submm properties of a sample of mid-IR selected type 2 QSOs at high redshift (1.5<z<4.5) from the FLS region (Martinez-Sansigre et al. 2005). We compare their properties to a matched sample of type-1 QSOs selected in the same field. Through SED fitting we are able to disentangle AGN and star-formation activity and consequently derive FIR luminosities of the two components, as well as SFRs and dust masses. We propose a picture in which intermediate-level radio activity in the core (pc scale) of AGN is linked to the obscuration of the nucleus (perhaps via a merger) since our AGN1 have systematically lower radio luminosities than our AGN2

    Are the Innovative Electronic Labels for Extra Virgin Olive Oil Sustainable, Traceable, and Accepted by Consumers?

    No full text
    Traceability is the ability to follow the displacement of food through its entire chain. Extra virgin olive oil (EVOO) represents Italian excellence, with consumers&rsquo; increased awareness for traceability. The aim of this work is to propose and analyze the economic sustainability and consumers&rsquo; preference of three technological systems supporting traceability: Near Field Communication (NFC) based; tamper-proof device plus Radio Frequency Identification (RFID) and app; QR code tag plus &ldquo;scratch and win&rdquo; system and blockchain. An anonymous questionnaire to Italian consumers (n = 1120) was made to acquire consumers&rsquo; acceptability of the systems and estimating their willingness to pay additional premium prices for these. An economic analysis estimated and compared the technology costs at different production levels. Results show that 94% of the consumer respondents are interested in the implementation of such technologies, and among them 45% chose QR-code protected by a &ldquo;scratch-and-win&rdquo; system with a blockchain infotracing-platform (QR-B). The consumers interested are willing to pay a mean premium price of 17.8% and economic analysis reported evidenced an incidence always lower than mid-/high-production levels. The success of the QR-B could be ascribed to different aspects: the cutting-edge fashion trend of blockchain in the food sector, the use of incentives, the easy-to-use QR-code, and the gamification strategy

    JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies – I. Survey overview and first results

    Get PDF
    JINGLE is a new JCMT legacy survey designed to systematically study the cold interstellar medium of galaxies in the local Universe. As part of the survey we perform 850 µm continuum measurements with SCUBA-2 for a representative sample of 193 Herschel-selected galaxies with M* > 109 M⊙, as well as integrated CO(2–1) line fluxes with RxA3m for a subset of 90 of these galaxies. The sample is selected from fields covered by the Herschel-ATLAS survey that are also targeted by the MaNGA optical integral-field spectroscopic survey. The new JCMT observations combined with the multiwavelength ancillary data will allow for the robust characterization of the properties of dust in the nearby Universe, and the benchmarking of scaling relations between dust, gas, and global galaxy properties. In this paper we give an overview of the survey objectives and details about the sample selection and JCMT observations, present a consistent 30-band UV-to-FIR photometric catalogue with derived properties, and introduce the JINGLE Main Data Release. Science highlights include the non-linearity of the relation between 850 µm luminosity and CO line luminosity (log LCO(2–1) =  1.372 logL850–1.376), and the serendipitous discovery of candidate z > 6 galaxies
    corecore