181 research outputs found

    Entanglement evolution and generalised hydrodynamics: interacting integrable systems

    Get PDF
    We investigate the dynamics of bipartite entanglement after the sudden junction of two leads in interacting integrable models. By combining the quasiparticle picture for the entanglement spreading with Generalised Hydrodynamics we derive an analytical prediction for the dynamics of the entanglement entropy between a finite subsystem and the rest. We find that the entanglement rate between the two leads depends only on the physics at the interface and differs from the rate of exchange of thermodynamic entropy. This contrasts with the behaviour in free or homogeneous interacting integrable systems, where the two rates coincide.Comment: 33 pages, 8 figures; v2 32 pages, 8 figures, improved presentation; v3 32 pages, 8 figures, minor modification

    CHALLENGES AND OPPORTUNITIES FOR THE IMPLEMENTATION OF H-BIM WITH REGARDS TO HISTORICAL INFRASTRUCTURES: A CASE STUDY OF THE PONTE GIORGINI IN CASTIGLIONE DELLA PESCAIA (GROSSETO – ITALY)

    Get PDF
    Historical Building Information Modeling (H-BIM) has been widely documented in literature and is becoming more popular with government bodies, who are increasingly choosing to make its use mandatory in public procurements and contracts. Although the system seems to be one of the best approaches for managing data and driving the decision-making process, several difficulties arise due to the amount of effort required in the initial phases, when the data derived from a geometrical survey must be converted into parametric elements. Moreover, users must decide on a “level of geometrical simplification” a long time in advance, and this inevitably leads to a loss of geometrical data. From this perspective, our research describes a procedure to optimize the workflow of information for existing artefacts, in order to achieve a “lean” H-BIM. In this article, we will analyse two aspects: the first relates to the level of accuracy in a digital model created from the two different point clouds achieved from laser scanner and form images, while the second concerns the conversion of this information into parametric elements (Building Object Models- BOMs) that need to have specific characteristics. The case study we are presenting is the “Ponte Giorgini” (“Giorgini Bridge”) in Castiglione della Pescaia (Grosseto – Italy)

    Generalized-Hydrodynamic approach to Inhomogeneous Quenches: Correlations, Entanglement and Quantum Effects

    Get PDF
    We give a pedagogical introduction to the Generalized Hydrodynamic approach to inhomogeneous quenches in integrable many-body quantum systems. We review recent applications of the theory, focusing in particular on two classes of problems: bipartitioning protocols and trap quenches, which represent two prototypical examples of broken translational symmetry in either the system initial state or post-quench Hamiltonian. We report on exact results that have been obtained for generic time-dependent correlation functions and entanglement evolution, and discuss in detail the range of applicability of the theory. Finally, we present some open questions and suggest perspectives on possible future directions.Comment: 46 pages, 13 figures. To appear in JSTAT special issue "Emergent Hydrodynamics in Integrable Many-body Systems"; v2 minor revision. As appears in JSTAT special issue "Emergent Hydrodynamics in Integrable Many-body Systems

    Mild Neurological Phenotype Associated with Hypomorphic Variants in the Ataxia-Telangiectasia Mutated Gene

    Get PDF
    Background: Ataxia-telangiectasia (A-T) is a progressive multisystemic neurodegenerative disease. The phenotypic spectrum includes conditions (variant A-T) with mild, late-onset, and atypical clinical presentations characterized by the prevalence of dyskinetic rather than ataxic features. Cases: We describe the clinical presentations of 3 siblings with early-onset truncal ataxia without obvious neurological deterioration or biological markers of classic A-T phenotype. We performed functional and genetic evaluation of 3 siblings with very mild neurological phenotype. Genetic evaluation with a next-generation sequencing panel for genes causative of cerebellar ataxia detected 2 known ATM gene variants, missense c.9023G>A p.(Arg3008His), and leaky splicing c.1066-6T>G variants. Functional studies showed mildly reduced ATM expression and residual kinase activity in the probands compared with healthy controls. Conclusions: These results suggest the importance of investigating ATM variants even in the presence of clinical and biological atypical cases to ensure specific therapeutic regimens and oncological surveillance in these patients

    Growth of R\'enyi Entropies in Interacting Integrable Models and the Breakdown of the Quasiparticle Picture

    Get PDF
    R\'enyi entropies are conceptually valuable and experimentally relevant generalisations of the celebrated von Neumann entanglement entropy. After a quantum quench in a clean quantum many-body system they generically display a universal linear growth in time followed by saturation. While a finite subsystem is essentially at local equilibrium when the entanglement saturates, it is genuinely out-of-equilibrium in the growth phase. In particular, the slope of the growth carries vital information on the nature of the system's dynamics, and its characterisation is a key objective of current research. Here we show that the slope of R\'enyi entropies can be determined by means of a spacetime duality transformation. In essence, we argue that the slope coincides with the stationary density of entropy of the model obtained by exchanging the roles of space and time. Therefore, very surprisingly, the slope of the entanglement is expressed as an equilibrium quantity. We use this observation to find an explicit exact formula for the slope of R\'enyi entropies in all integrable models treatable by thermodynamic Bethe ansatz and evolving from integrable initial states. Interestingly, this formula can be understood in terms of a quasiparticle picture only in the von Neumann limit.Comment: 19 pages, 6 figure

    Growth of RĂ©nyi Entropies in Interacting Integrable Models and the Breakdown of the Quasiparticle Picture

    Get PDF
    RĂ©nyi entropies are conceptually valuable and experimentally relevant generalizations of the celebrated von Neumann entanglement entropy. After a quantum quench in a clean quantum many-body system they generically display a universal linear growth in time followed by saturation. While a finite subsystem is essentially at local equilibrium when the entanglement saturates, it is genuinely out of equilibrium in the growth phase. In particular, the slope of the growth carries vital information on the nature of the system's dynamics, and its characterization is a key objective of current research. Here we show that the slope of RĂ©nyi entropies can be determined by means of a spacetime duality transformation. In essence, we argue that the slope coincides with the stationary density of entropy of the model obtained by exchanging the roles of space and time. Therefore, very surprisingly, the slope of the entanglement is expressed as an equilibrium quantity. We use this observation to find an explicit exact formula for the slope of RĂ©nyi entropies in all integrable models treatable by thermodynamic Bethe ansatz and evolving from integrable initial states. Interestingly, this formula can be understood in terms of a quasiparticle picture only in the von Neumann limit

    A New Orbiting Deployable System for Small Satellite Observations for Ecology and Earth Observation

    Get PDF
    In this paper, we present several study cases focused on marine, oceanographic, and atmospheric environments, which would greatly benefit from the use of a deployable system for small satellite observations. As opposed to the large standard ones, small satellites have become an effective and affordable alternative access to space, owing to their lower costs, innovative design and technology, and higher revisiting times, when launched in a constellation configuration. One of the biggest challenges is created by the small satellite instrumentation working in the visible (VIS), infrared (IR), and microwave (MW) spectral ranges, for which the resolution of the acquired data depends on the physical dimension of the telescope and the antenna collecting the signal. In this respect, a deployable payload, fitting the limited size and mass imposed by the small satellite architecture, once unfolded in space, can reach performances similar to those of larger satellites. In this study, we show how ecology and Earth Observations can benefit from data acquired by small satellites, and how they can be further improved thanks to deployable payloads. We focus on DORA—Deployable Optics for Remote sensing Applications—in the VIS to TIR spectral range, and on a planned application in the MW spectral range, and we carry out a radiometric analysis to verify its performances for Earth Observation studies

    R\ue9nyi entropies of generic thermodynamic macrostates in integrable systems

    Get PDF
    We study the behaviour of R\ue9nyi entropies in a generic thermodynamic macrostate of an integrable model. In the standard quench action approach to quench dynamics, the R\ue9nyi entropies may be derived from the overlaps of the initial state with Bethe eigenstates. These overlaps fix the driving term in the thermodynamic Bethe ansatz (TBA) formalism. We show that this driving term can be also reconstructed starting from the macrostate's particle densities. We then compute explicitly the stationary R\ue9nyi entropies after the quench from the dimer and the tilted N\ue9el state in XXZ spin chains. For the former state we employ the overlap TBA approach, while for the latter we reconstruct the driving terms from the macrostate. We discuss in full detail the limits that can be analytically handled and we use numerical simulations to check our results against the large time limit of the entanglement entropies

    TBCE Mutations Cause Early-Onset Progressive Encephalopathy with Distal Spinal Muscular Atrophy

    Get PDF
    Tubulinopathies constitute a family of neurodevelopmental/neurodegenerative disorders caused by mutations in several genes encoding tubulin isoforms. Loss-of-function mutations in TBCE, encoding one of the five tubulin-specific chaperones involved in tubulin folding and polymerization, cause two rare neurodevelopmental syndromes, hypoparathyroidism-retardation-dysmorphism and Kenny-Caffey syndrome. Although a missense mutation in Tbce has been associated with progressive distal motor neuronopathy in the pmn/pmn mice, no similar degenerative phenotype has been recognized in humans. We report on the identification of an early-onset and progressive neurodegenerative encephalopathy with distal spinal muscular atrophy resembling the phenotype of pmn/pmn mice and caused by biallelic TBCE mutations, with the c.464T>A (p.Ile155Asn) change occurring at the heterozygous/homozygous state in six affected subjects from four unrelated families originated from the same geographical area in Southern Italy. Western blot analysis of patient fibroblasts documented a reduced amount of TBCE, suggestive of rapid degradation of the mutant protein, similarly to what was observed in pmn/pmn fibroblasts. The impact of TBCE mutations on microtubule polymerization was determined using biochemical fractionation and analyzing the nucleation and growth of microtubules at the centrosome and extracentrosomal sites after treatment with nocodazole. Primary fibroblasts obtained from affected subjects displayed a reduced level of polymerized α-tubulin, similarly to tail fibroblasts of pmn/pmn mice. Moreover, markedly delayed microtubule re-polymerization and abnormal mitotic spindles with disorganized microtubule arrangement were also documented. Although loss of function of TBCE has been documented to impact multiple developmental processes, the present findings provide evidence that hypomorphic TBCE mutations primarily drive neurodegeneration
    • …
    corecore