14,727 research outputs found

    A comparison and evaluation of satellite derived positions of tracking stations

    Get PDF
    A comparison is presented of sets of satellite tracking station coordinate values published in the past few years by a number of investigators, i.e. Goddard Space Flight Center, Smithsonian Astrophysical Observatory, Ohio State University, The Naval Weapons Laboratory, Air Force Cambridge Research Laboratories, and Wallops Island. The comparisons have been made in terms of latitude, longitude and height. The results of the various solutions have been compared directly and also with external standards such as local survey data and gravimetrically derived geoid heights. After taking into account systematic rotations, latitude and longitude agreement on a global basis is generally 15 meters or better, on the North American Datum agreement is generally better than 10 meters. Allowing for scale differences (of the order of 2 ppm) radial agreement is generally of the order of 10 meters

    Diversification of myco-heterotrophic angiosperms: evidence from Burmanniaceae.

    Get PDF
    Background - Myco-heterotrophy evolved independently several times during angiosperm evolution. Although many species of myco-heterotrophic plants are highly endemic and long-distance dispersal seems unlikely, some genera are widely dispersed and have pantropical distributions, often with large disjunctions. Traditionally this has been interpreted as evidence for an old age of these taxa. However, due to their scarcity and highly reduced plastid genomes our understanding about the evolutionary histories of the angiosperm myco-heterotrophic groups is poor. Results - We provide a hypothesis for the diversification of the myco-heterotrophic family Burmanniaceae. Phylogenetic inference, combined with biogeographical analyses, molecular divergence time estimates, and diversification analyses suggest that Burmanniaceae originated in West Gondwana and started to diversify during the Late Cretaceous. Diversification and migration of the species-rich pantropical genera Burmannia and Gymnosiphon display congruent patterns. Diversification began during the Eocene, when global temperatures peaked and tropical forests occurred at low latitudes. Simultaneous migration from the New to the Old World in Burmannia and Gymnosiphon occurred via boreotropical migration routes. Subsequent Oligocene cooling and breakup of boreotropical flora ended New-Old World migration and caused a gradual decrease in diversification rate in Burmanniaceae. Conclusion - Our results indicate that extant diversity and pantropical distribution of myco-heterotrophic Burmanniaceae is the result of diversification and boreotropical migration during the Eocene when tropical rain forest expanded dramaticall

    A magnetized torus for modeling Sgr A* millimeter images and spectra

    Full text link
    Context. The supermassive black hole, Sagittarius (Sgr) A*, in the centre of our Galaxy has the largest angular size in the sky among all astrophysical black holes. Its shadow, assuming no rotation, spans ~ 50 microarcsec. Resolving such dimensions has long been out of reach for astronomical instruments until a new generation of interferometers being operational during this decade. Of particular interest is the Event Horizon Telescope (EHT) with resolution ~ 20 microarcsec in the millimeter-wavelength range 0.87 mm - 1.3 mm. Aims. We investigate the ability of the fully general relativistic Komissarov (2006) analytical magnetized torus model to account for observable constraints at Sgr A* in the centimeter and millimeter domains. The impact of the magnetic field geometry on the observables is also studied. Methods. We calculate ray-traced centimeter- and millimeter-wavelength synchrotron spectra and images of a magnetized accretion torus surrounding the central black hole in Sgr A*. We assume stationarity, axial symmetry, constant specific angular momentum and polytropic equation of state. A hybrid population of thermal and non-thermal electrons is considered. Results. We show that the torus model is capable of reproducing spectral constraints in the millimeter domain, and in particular in the observable domain of the EHT. However, the torus model is not yet able to fit the centimeter spectrum. 1.3 mm images at high inclinations are in agreement with observable constraints. Conclusions. The ability of the torus model to account for observations of Sgr A* in the millimeter domain is interesting in the perspective of the future EHT. Such an analytical model allows very fast computations. It will thus be a suitable test bed for investigating large domains of physical parameters, as well as non-black-hole compact object candidates and alternative theories of gravity.Comment: Major changes wrt the June 2014 version. Accepted by A&

    Bose-Einstein supersolid phase for a novel type of momentum dependent interaction

    Full text link
    A novel class of non-local interactions between bosons is found to favor a crystalline Bose-Einstein condensation ground state. By using both low energy effective field theory and variational wavefunction method, we compare this state not only with the homogeneous superfluid, as has been done previously, but also with the normal (non-superfluid) crystalline phase and obtain the phase diagram. The key characters are: the interaction potential displays a negative minimum at finite momentum which determines the wavevector of this supersolid phase; and the wavelength corresponding to the momentum minimum needs to be greater than the mean inter-boson distance.Comment: 4 pages 3 figures, fig 1 and fig 2 update

    Employing a High-Level Language for Porting Numerical Applications to Reconfigurable Hardware

    Get PDF
    The deployment of FPGAs has become more and more common over the last years. Many applications have since then been accelerated by porting advantageous parts onto FPGA hardware. High-level, C-like programming languages and advanced tools such as Impulse CoDeveloper that produce hardware descriptions can potentially help with this task. We showcase the applicability of this new approach to FPGA acceleration in terms of solving the Poisson equation with the conjugate gradient (CG) method and a red-black symmetric successive over-relaxation (SSOR) preconditioner as a model problem. In this case, the CPU executes the CG method while an FPGA takes over the red-black SSOR preconditioning part. We compare a purely CPU-based algorithm to our FPGA-extended approach in order to evaluate the maturity and applicability of high-level language translators with regard to accelerating numerical applications

    The relative influences of disorder and of frustration on the glassy dynamics in magnetic systems

    Full text link
    The magnetisation relaxations of three different types of geometrically frustrated magnetic systems have been studied with the same experimental procedures as previously used in spin glasses. The materials investigated are Y2_2Mo2_2O7_7 (pyrochlore system), SrCr8.6_{8.6}Ga3.4_{3.4}O19_{19} (piled pairs of Kagom\'e layers) and (H3_3O)Fe3_3(SO4_4)2_2(OH)6_6 (jarosite compound). Despite a very small amount of disorder, all the samples exhibit many characteristic features of spin glass dynamics below a freezing temperature TgT_g, much smaller than their Curie-Weiss temperature θ\theta. The ageing properties of their thermoremanent magnetization can be well accounted for by the same scaling law as in spin glasses, and the values of the scaling exponents are very close. The effects of temperature variations during ageing have been specifically investigated. In the pyrochlore and the bi-Kagom\'e compounds, a decrease of temperature after some waiting period at a certain temperature TpT_p re-initializes ageing and the evolution at the new temperature is the same as if the system were just quenched from above TgT_g. However, as the temperature is raised back to TpT_p, the sample recovers the state it had previously reached at that temperature. These features are known in spin glasses as rejuvenation and memory effects. They are clear signatures of the spin glass dynamics. In the Kagom\'e compound, there is also some rejuvenation and memory, but much larger temperature changes are needed to observe the effects. In that sense, the behaviour of this compound is quantitatively different from that of spin glasses.Comment: latex VersionCorrigee4.tex, 4 files, 3 figures, 5 pages (Proceedings of the International Conference on Highly Frustrated Magnetism (HFM2003), August 26-30, 2003, Institut Laue Langevin (ILL), Grenoble, France

    Multidisciplinary research from ERTS-1 data

    Get PDF
    There are no author-identified significant results in this report

    Aging in lattice-gas models with constrained dynamics

    Full text link
    We investigate the aging behavior of lattice-gas models with constrained dynamics in which particle exchange with a reservoir is allowed. Such models provide a particularly simple interpretation of aging phenomena as a slow approach to criticality. They appear as the simplest three dimensional models exhibiting a glassy behavior similar to that of mean field (low temperature mode-coupling) models.Comment: 5 pages and 3 figures, REVTeX. Submitted to Europhysics Letter
    • …
    corecore