SXIT

Karlsruhe Institute of Technology

Employing a High-Level Language for
Porting Numerical Applications to Re-
configurable Hardware

V. Heuveline, W. Karl, F. Nowak, M. Schmidtobreick,
F. Wilhelm

No. 2011-13

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association



ISSN 2191-0693
No. 2011-13

L Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

Impressum

Karlsruhe Institute of Technology (KIT)
Engineering Mathematics and Computing Lab (EMCL)

Fritz-Erler-Str. 23, building 01.86
76133 Karlsruhe
Germany

KIT — University of the State of Baden Wuerttemberg and

National Laboratory of the Helmholtz Association

Published on the Internet under the following Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de .

©I0Ie)




Employing a High-Level Language for Porting
Numerical Applications to Reconfigurable
Hardware

Mareike Schmidtobreick®, Florian Wilhelm?, Fabian Nowak?, Vincent
Heuveline!, Wolfgang Karl?

1 Engineering Mathematics and Computing Lab (EMCL)
at Karlsruhe Institute of Technology (KIT)

2 Institute of Computer Science and Engineering (ITEC)
at Karlsruhe Institute of Technology (KIT)

firstname.lastname@kit.edu

Kaiserstrafe 12
76131 Karlsruhe
Germany

Abstract. The deployment of FPGAs has become more and more com-
mon over the last years. Many applications have since then been accel-
erated by porting advantageous parts onto FPGA hardware. High-level,
C-like programming languages and advanced tools such as Impulse CoDe-
veloper that produce hardware descriptions can potentially help with this
task. We showcase the applicability of this new approach to FPGA accel-
eration in terms of solving the Poisson equation with the conjugate gra-
dient (CG) method and a red-black symmetric successive over-relaxation
(SSOR) preconditioner as a model problem. In this case, the CPU ex-
ecutes the CG method while an FPGA takes over the red-black SSOR
preconditioning part. We compare a purely CPU-based algorithm to our
FPGA-extended approach in order to evaluate the maturity and appli-
cability of high-level language translators with regard to accelerating
numerical applications.

Keywords: Reconfigurable Hardware, FPGA, Numerical Methods, Precondi-
tioner, Impulse CoDeveloper, Accelerator

1 Introduction

One cannot emphasize too much on the importance of numerical methods to solve
socially relevant problems. Solving such increasingly complex problems requires
much computational power in terms of speed and parallelism. Traditionally, these
requirements are met with even larger clusters of commodity hardware based on
x86 CPU design. However, most scientific software does not scale linearly with
the number of processors, resulting in a decrease of efficiency with an increase
of CPUs.



Nowadays, scientists reconsider the multi-purpose approach of a CPU, mean-
ing they become aware of the fact that a CPU is falling behind other technolo-
gies when it comes to a special niche of applications. To properly exploit modern
multi-core processors, special-purpose software that focuses on parallelizing ap-
plications by annotations (cmp. OpenMP) can be employed. In contrast, special-
purpose hardware can be used, of which the most lately renowned are GPUs and
Cell processors. GPUs are built to offer a high degree of parallelism and fixed
function units that perform special tasks, often related to 3D calculations, with
high efficiency. Today, the usage of GPUs as accelerators for certain parts of
numerical programs is an overly accepted method to speed up execution, e.g. as
preconditioners [3] or even entire solvers [7].

Another special-purpose hardware approach is to let the programmer build
their own parallel function units, e.g. scalar product, according to the special
needs of any application from any domain. The technology providing this is
termed Reconfigurable Hardware and has gained more attention over the last
years (although it’s much older than GPGPU technology), but has not been
considered the same breakthrough as GPU-based accelerators in scientific com-
puting yet. The properties of reconfigurable hardware like Field-Programmable
Gate Arrays (FPGAs) are intriguing as they can be configured to adopt any
arbitrary circuit design. Hence, FPGAs leave it up to the programmer to decide
which and how many special-purpose function units are needed. A well-known
example of the possibilities resulting from this is the Smith-Waterman algo-
rithm that performs local sequence alignment of proteins in biotechnology. The
speedup of Smith-Waterman on an FPGA [12] is up to 100x compared to a CPU
implementation because of its special needs that a generic CPU does not satisfy
sufficiently. The main reason for the hesitation of scientists to adapt to this tech-
nology is the challenge of implementing an algorithm. Commonly, an algorithm
is implemented in a comparatively low-level description language like Verilog
and VHDL. Synthesis tools further process this description of the algorithm to
finally configure the FPGA. These languages follow a different programming
paradigm, namely implicit parallelism and explicit sequentiality. Hence, pro-
gramming hardware is error-prone, time-consuming and not feasible for most
engineers and mathematicians. Recent advancements however allow implement-
ing an algorithm by means of higher-level programming paradigms based on C,
C++ or Java, which is converted to hardware descriptions that can be synthesized
by proprietary vendor tools afterwards.

We therefore study the applicability of this high-level language approach to
FPGA programming and the interplay of CPU and FPGA for numerical ap-
plications from a mathematician’s point of view. As exemplary application, we
implement a preconditioner for the CG method [9], which is not only one of the
most time-consuming functions but is also highly suited to automatic paralleliza-
tion, using a high-level C-based language for gaining an FPGA implementation.
Section 2 provides the mathematical background for our model problem and also
presents the rationale for a symmetric successive-over-relaxation preconditioner
with red-black ordering. After a quick overview of the state of the art in C-based



hardware development in Section 3, we present our implementation and bench-
marking results of the hardware-assisted preconditioned CG algorithm. Section
4 summarizes our work and points out future perspectives.

2 Numerical Background

The maybe most well-known problem in numerics is to solve the Poisson equation
that occurs in electrostatics and mechanical engineering. This makes it a perfect
first candidate to be approached with a new technology. Let {2 C R2 be an open
and bounded domain and let f : 2 — R, f € C(£2) be a given function. A
function u : 2 — R, u € C?(2) N C(N) is to be found that satisfies

—Au=f inf2, (1)

where A = % + %. We further demand homogeneous Dirichlet boundary

conditions u = 0 on 952 and set 2 = (0,1)? for simplicity. We discretize our
domain {2 by an equidistant grid with parameter h

O ={(z,y) € |x=k-hy=1-h,(kl) €7},

and approximate —A by means of finite differences

—Ujte, — Uj— 4Uj — Ujqe, — Uj—
= e S Ty S e St 4 O(1), 2)
where ujqe, := u(x; + he;) and e; denotes the i*" unit vector. We first apply a

lexicographical ordering to the grid points, i.e. starting at one corner of the grid
and numbering the nodes consecutively. Then we multiply Equation (2) with h?
and obtain a matrix Aj;, with block structure

T —I
I T I 4l 1

. e | .1
o =1
I T -1 4

and a corresponding right-hand side by, () = h?- f(z;). As a result of the sparsity
pattern in (3) we can express A, as the well-known five-point stencil expressing
Equation 2, illustrated in Figure 1. Additionally, Aj; has the advantage that it
is symmetric and positive definite. For solving this kind of linear system, the
conjugate gradient (CG) method is the best known iterative technique [11]. The
number of necessary iterations that the CG method requires for reaching a good
approximation to the solution depends on the condition number k(A) through

the relation
EQM A -1\
- <2 —= , (4)
1] 4 k(A) + 1




Fig. 1. Five-point stencil of the Poisson problem (1) discretized by finite differences on
an equidistant grid.

Algorithm 1 Preconditioned Conjugate Gradient method [2]. Iterations are
denoted with lower indices.
1: To = b— Al?()

2: 2o = M71T0
3: po = 2o
4: for k = 0,7}, vy kmaz do
b Ok = PfA;k
6 Th41 = Tk + QKD
7 Thi1 = Tk — axApg
8: Zk+1 = M_l’f‘k+1
9:  if v, zk41 < TOL then
10: exit loop
11: end if
. _ Tk41Fk+1
12:  Br = :;TT

13: Pk+1 = Zk+1 + ﬁkpk
14: end for

where e®) = z(F) — g is the error in the k'" iteration and || - ||4 the energy

norm. This inequality justifies the application of a preconditioner M where
k(M~1A) < k(A). Conclusively, fewer iterations are necessary to solve the
equivalent system M ~!'Axz = M~'b. In our case, M needs to be symmetric
and positive definite in order to sustain these properties for the CG method.
Algorithm 1 shows pseudo code of the CG method with preconditioning.

2.1 The Symmetric Successive Over-Relaxation Preconditioner

An often applied preconditioner for CG is a descendant of the Successive-Over-
Relaxation (SOR) method. As a member of the class of splitting methods, SOR
relies on the matrix splitting wA = (D +wL) — ((1 —w)D —wU), where D is
the diagonal of A, L its strict lower part, U = L7 its strict upper part and w a
relaxation parameter with w € (0,2). An iteration scheme is then given by

(D +wL)z®*+h) = (1-w)D—wL") ) 4+ wb, (5)

that solves the given equation system under the same premises as the CG method
with the fulfilled additional requirement that all diagonal entries are positive.
Given the sparsity pattern of our matrix (5), this can be easily translated to
a stencil formulation. The drawback of the scheme is that the left-hand side of



Algorithm 2 Red-black symmetric Gauss-Seidel (SSOR with w = 1) as applied
in line 8 of Algorithm 1.
1: for all z; in red points do

2t zi=(ri+ (Tjgey +Tj—er + Tjtes T Tj—ez)/4)/4
3: end for

4: for all z; in black points do

5: 2i =Ti+ (Zjger + Zj—er + Zjtes + Zj—es)/4

6: end for

(5) enforces the calculation of z(**1) by a serial forward substitution. Using a
red-black ordering of the unknowns remedies this drawback so that unknowns
with the same color are decoupled from each other as illustrated in Figure 2.
This ordering allows the parallel calculation of unknowns with the same color,
thus making it a perfect candidate for execution on a highly parallel system like
an FPGA.

An SOR preconditioner is then simply defined as one SOR iteration with the
starting vector z(°) chosen to be the null vector and the right-hand side b = r.
The preconditioner is applied in line 8 of the CG Algorithm 1. To achieve the
necessary symmetry, which is violated by the left-hand side in (5), we update
consecutively two times with reversed ordering of the unknowns the second time
to get a symmetric SOR (SSOR) preconditioner, formally

M~ =w@2-w)(D+wL")™'D(D +wL)™". (6)

In the case of a red-black ordering, the best relaxation parameter w is known to
be 1, which renders the SSOR a symmetric Gauss-Seidel method [1]. Equation
(6) can then be simplified to gain Algorithm 2.

3 C-based FPGA Programming

Due to the qualification of FPGAs as accelerators, already a multitude of floating-
point algorithms [8] and numerical solvers [10] have been ported onto reconfig-
urable hardware. Since creating FPGA designs is a very tedious task, intensive
research has gone into hiding the technical low-level details of implementation. A
suitable approach is to provide a toolbox of elementary operations on an FPGA

Fig. 2. Example of a red-black ordering. The rectangles denote border values of 0.



T
[Design]—»[(] Code]—>’ C to HDL Converter }—{HDL Code]—>’ FPGA vendor tools ‘
o

]

Bit Code

design verification and
debugging on chip

Fig. 3. Hardware design workflow of an application design in C code that is converted
to VHDL which is then used to configure an FPGA.

as a library that can be accessed by a high-level language [4,5]. Although using
such a library is fairly easy and requires no deep knowledge about FPGA pro-
gramming, the application is limited to the operations provided by the library.
Another more flexible approach is to let the programmer design an algorithm in
a high-level language and to convert it into a synthesizable Hardware Descrip-
tion Language (HDL) like VHDL or Verilog. Tools provided by FPGA vendors
then process this HDL code to configure the hardware according to the design.
Figure 3 sketches this process. In this work, we investigate how the latter ap-
proach, namely by using the toolchain of IMPULSE CODEVELOPER VERSION
3.6, performs in solving our model problem with the help of an FPGA accelera-
tor. ROCCC, another C to HDL compilation framework, might also pose a valid
choice; however it does not pose the wanted off-the-shelf approach because there
is no so-called backend available to attach the generated code to our employed
hardware.

On the hardware side we use the Accelium Coprocessor System (AC2030).
This is a product of DRC Computer Corporation consisting of a quad-core AMD
Opteron processor 2350 and a Reconfigurable Processing Unit (RPU) attached
via HyperTransport at 400 MHz. It is placed on a free Opteron socket and
contains a Xilinx Virtex-5 LX 330 FPGA. The RPU holds its own Reduced
Latency Dynamic RAM (RLDRAM) with a size of up to 512 MB. Detailed
specifications can be found in [6].

3.1 Impulse C

As a high-level language, Impulse C uses the syntax of C, but instead of the
C-typical procedural paradigm it employs the communicating sequential pro-
cesses paradigm (CSP). This results in concurrently running software and hard-
ware processes talking to each other over streams or shared memory. While this
paradigm only requires setting up a stream for input and output data on the
host side, on the accelerator side it demands the processing of the data to be in
a more or less sequential fashion. Accordingly, random data access is not pos-
sible. Streams can transport arbitrarily sized integer values, fixed-point data or
floating-point numbers. The FPGA-side memory is used by software processes
as well as by the hardware processes on the FPGA to exchange data.

Source code in Impulse C needs to follow a strict scheme. In a source file for



Software Hardware

SW process HW process

parameter to for(i=0, ..., n)
main: (s,n) sol o='s

Fig. 4. Repeatedly executing an elementary operation ¢ € {+, %, /}.

programming the hardware, the programmer declares functions that are then ex-
ecuted as hardware processes. The analogue applies to a software source file where
one defines functions that become software processes. In a configuration function,
inside the hardware source file, all processes are setup to use the formerly defined
functions and to communicate by virtue of signals, streams and shared memory.
The main function resides in the software file and is mostly intended to initialize
the architecture with co_initialize that calls the configuration function and
to start the software and hardware processes with co_execute. According to
this scheme, the actual algorithm takes place via the interaction between hard-
ware and software processes. To demonstrate the CSP programming paradigm
and to find out about the potential of our FPGA, we implemented benchmarks
of elementary mathematical operations.

In the first benchmark, a software process sends a single-precision floating-
point number s and an amount n over the stream interface to the hardware
process, which in return applies n times a given operation (+,-,/) to s. The
result is then communicated back to the software process over another stream as
illustrated in Figure 4. We use this setup to find out the time a single mathemat-
ical operation on the FPGA needs. Since we can only measure the time between
sending s and n and receiving the solution, besides the runtime needed for the n
operations, the measured runtime includes communication time. Consequently,
the hereof calculated time for a single operation includes 1/n the runtime of two
communications. By increasing n we can asymptotically eliminate the commu-
nication time, as shown in Table 1. From our results, we can see that roughly
after one million operations the portion of communication time vanishes.

Analyzing the result and considering that the FPGA is running at a clock
rate of 100 MHz (10 ns clock period), we can conclude that a floating-point
addition or multiplication in a for loop takes at least 4 clock cycles (0.05 us —
50 ns) and in the case of a division at least 28 clock cycles. For the remaining
worst-case estimations, we will therefore round to 5 cycles for an addition and to
29 cycles for a division. We performed the same tests for integers and even for an
empty loop body. The very satisfying result was that both an integer addition
in a for loop and an empty for loop need 2 clock cycles. The reason is that
the configured circuit for this algorithm on the FPGA concurrently executes the
addition while also performing the counter increment and the evaluation of the
conditional jump in the for loop. This kind of instruction level parallelism is
uncommon to a standard CPU where the overhead of a loop operation would be
clearly visible, and hence the tools and the FPGA itself look promising so far.



Table 1. Timing results of an n times performed operation on a floating point number
in microseconds executed simultaneously by 1, 4 and 8 hardware processes.

1 HW 1 HW 1 HW 4 HW 8 HW
number of process process process processes Pprocesses
operations time per time per time per time per time per

add mult div add add
100 1.543333 1.410000 1.693333 2.056667 2.812500
10,000 0.064400 0.063500 0.300633 0.026533 0.026700
1,000,000 0.049885 0.052089 0.288621 0.012576 0.006407
100,000,000 0.049742 0.049742 0.288497 0.012437 0.006219

As our first benchmark executed sequentially one operation after another due
to data dependencies, we are not exploiting the possibility of a nearly arbitrary
number of parallel processes in hardware, which is only restricted by the physical
size of the FPGA. Hence, we implemented a second benchmark that executes
a floating-point addition n times on 1, 4 and 8 hardware processes. Ideally,
on k hardware processes the runtime should decrease to 1/k'" the time of a
single process. Table 1 shows the results of these tests. Looking at the last row
of this table, we can see that the asymptotically ideal speedup is achieved for 4
and 8 hardware processes. The parallelization was done manually by copying the
function of the hardware process in order to get up to 8 hardware processes. Then
we had to consistently wire one software process to many hardware processes
via one input stream and one output stream per process.

We encountered that all functions that are called by a hardware process
need to be API functions or specially defined primitive functions. These are
annotated with an Impulse C pragma and define distinct hardware elements
that can be called by hardware processes. Only void, int and float are valid
return parameters, which prohibits to return matrices or pointers to such.

3.2 Implementation of Symmetric Gauss-Seidel Preconditioner

We first implemented the preconditioned CG Algorithm 1 on the CPU in plain
C. This CG implementation calls either a software preconditioner on the CPU or
an FPGA-implemented Symmetric Gauss-Seidel (SGS) preconditioner as in Al-
gorithm 2. We decided to not implement the entire CG method inside an Impulse
C software CPU-side process because this covers the use case that an accelerated
preconditioner needs to be integrated into existing software. Therefore, the Im-
pulse C software process acts only as a proxy between the CG implementation
and the Impulse C hardware process with the SGS preconditioner. Furthermore
as a result of the red-black scheme that exposes few data dependencies, the pre-
conditioner is a suitable candidate for automatic parallel execution. Figure 5
illustrates the workflow of our program. Before the first iteration, the software
process transfers the values of the five-point stencil to the hardware process
where they are stored as coefficients in registers. This allows us to use the same
code for other five-point stencil coefficients. In each iteration, CG passes the
residual to a preconditioner function that invokes the entire architecture with



RPU

2 TR by Memory

. d—\‘)
CPU iteration k \W L J
= ) f )
CG SSOR 2. Send start signal| | SSOR
Solver SW Process | _ ~ | HW Process

3. St It zx
ream resull Zr4+p kFPGA

J (. J

Fig. 5. Flow chart of a CG solver which calls a preconditioner that is implemented on
an FPGA. The current iteration number is denoted by k.

co_execute. The software process then copies the residual to the FPGA mem-
ory and sends a signal to the hardware process after completion because there
is no automatism until now to map the required arbitrary memory access to
streams. Hereon, the FPGA performs the SGS operations on the residual which
is extended by a boundary halo and therefore avoids unnecessary switch state-
ments to distinguish between inner and boundary points. The treated elements
are directly streamed back to the software process. After the last element has
been transferred, the software process terminates and CG continues.

Employing the concept of the boundary halo can already be considered a
minor aspect of hardware-awareness as it both saves hardware resources and
keeps the pipeline structure simple. It should also be mentioned that we are
using single-precision floating-point throughout the whole program. Although
Impulse C does indeed allow for double precision, we only present a first study
on the general applicability of C-to-HDL tools instead of a high-performance
implementation.

A-priori performance estimation of the FPGA implementation. We
now estimate the theoretical time consumption of a straight-forward implemen-
tation. The transport of one floating-point number is achieved at one clock cycle
of the 400 MHz HyperTransport interconnect, i.e. tiransport = 2.5ns. (Addi-
tional latency of the HyperTransport is negligible for these amounts of data.)
Processing one stencil requires 5 random-access data fetches from RLDRAM, 4
additions, 1 or 2 divisions, and 1 write-back to host memory. This results in a
pipeline length of 4 adds *5 cycles / add 42 divs x29 cycles / div = 78 cycles, with
an instruction issue rate of 1 instruction every 29 cycles due to the non-pipelined
division. In return, this can hide the memory fetches, i.e. one stencil completing
every 29 % 10ns = 290ns when running at 100 MHz. The time ., jtepack = 2.5n8
for writing back the results can also be hidden except for the very last datum
for which we also have to account clearing the entire pipeline with 78 — 1 cycles.
For an n x n matrix, toperan = N*tiransport +1° %2900 + 77 % 100 + tyriteback =
n?%2.5ns+n?*290ns+ 770ns+ 2.5ns approximates the execution time, which is
for our 4000 x 4000 case typerqn = 4680ms. Potential for optimization by Impulse
C lies in pipelining the division, caching previously used data, and exploiting



Table 2. Runtime in seconds of a software and FPGA-based SGS preconditioner for
different refinement levels. The FPGA-supported preconditioner performs 13x below
our expectation.

Ratio real to

Refinement Time of SGS Time of SGS Expected time .
expected time

level on CPU on FPGA on FPGA

on FPGA
500 x 500 0.003518 0.974298 0.073 13.32
1000 x 1000 0.013678 3.880566 0.292 13.26
2000 x 2000 0.055825 15.60444 1.170 13.34
4000 x 4000 0.257733 61.91578 4.680 13.23

data-level parallelism by instantiating several pipelines until the implementa-
tion becomes memory-bound.

CPU and FPGA performance measurements. To give a fair comparison
of the performance of the preconditioner on the FPGA, we implemented the
same algorithm as a software function with red-black ordering and sequential
processing on a single core. The application was compiled with gee and -02. We
then solely measured the runtime of the software and hardware preconditioner.
Table 2 shows the results of these benchmarks for different refinement levels h.
The maximum to-be-expected throughput of a naive implementation is roughly
20 times less than the processing time on the CPU with a 20 times higher
clock rate; though still without exploiting any additional parallelism apart from
pipelining and without any caching.

FPGA performance analysis. The poor real performance of the FPGA in
comparison to the a-priori estimation and to the CPU has several causes. First,
we transfer the residual r,4; to the RPU’s memory before the actual calcula-
tion starts. However, from the above formula we can see that this transfer only
accounts for 2.5n.s/290ns = 0.0086 per element. Secondly, the FPGA is perform-
ing with 1/20 of the CPU’s clock rate. Thirdly, it needs to separately load each
stencil operand from RPU memory into FPGA registers without help of a deep
memory hierarchy in contrast to a CPU that employs caches. Fourth, the num-
ber of states in the state machine of the stencil is in the quite high range of 40 to
80, with each state lasting between 1 (loop increment) and 29 cycles (division).
This high number of executed states potentially indicates that all the operations
are only executed one after the other, wasting much room for optimization. So
even without caching, the resulting hardware design is rather compute-bound
than memory-bound because 29 cycles for the division would leave enough room
to read 5 stencil data and write the result. Fifth, computations are not arranged
in a tree-based, pipeline-suitable order. Qur efforts to allow easy parallelization
with the help of the red-black ordering scheme did not automatically yield any
notable parallelization because only one pipeline was created automatically as
the resource consumption report of the place&route steps of the FPGA vendor



Table 3. Resource consumption of the SGS method on Virtex-5 LX330.

Resource Consumption Ratio
Number of DSP48Es 47 out of 192 24,00%
Number of RAMB36SDP_EXPs 54 out of 288 18,00%
Number of Slice Registers 41574 out of 207360 20,00%
Number of Slice LUTS 43767 out of 207360 21,00%
Number of Slice LUT-Flip Flop pairs 56843 out of 207360 27,00%

toolchain indicates in Table 3 (a simple test application revealed that the man-
agement infrastructure of the RPU system already accounts for more than 35K
of the slice registers and more than 45K slice LUT-flip flop pairs). Seemingly,
the Impulse Compiler does not exploit this implicitly, and explicit loop-unrolling
via a pragma proved not to be possible with dynamic loop boundaries.

As manual parallelization like in Subsection 3.1 proved too error-prone, we
did not further investigate in splitting the preconditioner into several hardware
processes that concurrently work on distinct data sets. Adding to this is the fact
that our target platform does only provide two RLDRAM interfaces, thus only
allowing concurrent memory access of two hardware processes.

Table 2 also shows remarkably well, that our implementation on the FGPA
scaled better with increasing refinement levels than the CPU implementation.
This seems to be due to the streaming model and is of special interest with regard
to the ongoing increase in FPGA bandwidth and increasing FPGA frequencies.

4 Conclusion and Perspectives

We showed that with the help of Impulse CoDeveloper it is possible to imple-
ment a preconditioner on an FPGA as part of a CG solver on a CPU for a
Laplace model problem. This did not require any deeper knowledge of reconfig-
urable hardware and an HDL. This task was fulfilled in a reasonable amount of
time, incomparably shorter than it would have taken using an HDL. The actual
performance results (approximately 13.4 times below what could be expected)
are not good enough to consider it a valid approach to design an accelerator for
numerical applications yet. Until now, hardware-awareness is crucial when tar-
geting FPGA technology, such as exploiting bandwidth and the available FPGA
resources while also creating efficient pipeline structures. Hence, only hardware
designers rather than high-level programmers can access the full potential of
FPGAs. Nevertheless, high-level language to HDL converter technology shows
great potential because providing hardware designers with C-like descriptions
and the generated hardware description can significantly reduce time to market
for high-performance FPGA designs. However, it should be kept in mind that it
is still an ongoing field of research, with numerous investigations towards stream-
ing and memory access optimizations currently being undertaken and already
today it allows non-hardware developers to easily develop (low-performance) ap-
plications for FPGAs. Moreover, the development of the FPGA technology itself
is gathering pace and we are looking forward to higher clock rates, faster in-
terconnects and other improvements yet to come, especially since frequency in



general-purpose processors has stopped to rise for the sake of more cores on a
single die. We are convinced that reconfigurable computing, made accessible to
scientists in the field of HPC by high-level languages, has a bright future as an
accelerator technology or even processing technology.

5

Acknowledgment

This work arose among others as part of the Scalable-Earth-System-Models for
high productivity climate simulations (ScalES) project funded by the German
Bundesministerium fiir Bildung und Forschung (BMBF No. 01THO08004E).

References

1.

2.

10.

11.

12.

Alefeld, G.: On the convergence of the symmetric SOR method for matrices with
red-black ordering. Numerische Mathematik 39, 113-117 (1982)

Alefeld, G., Lenhardt, 1., Obermaier, H.: Parallele numerische Verfahren. Springer,
Berlin (2002)

Ament, M., Knittel, G., Weiskopf, D., Strasser, W.: A Parallel Preconditioned
Conjugate Gradient Solver for the Poisson Problem on a Multi-GPU Platform.
In: PDP '10: Proceedings of the 2010 18th Euromicro Conference on Parallel,
Distributed and Network-based Processing. pp. 583-592. IEEE Computer Society,
Washington, DC, USA (2010)

Cardoso, J.M.P., Diniz, P.C., Weinhardt, M.: Compiling for Reconfigurable Com-
puting: A Survey. ACM Comput. Surv. 42(4), 1 65 (2010)

Curreri, J., Koehler, S., Holland, B., George, A.D.: Performance Analysis with
High-Level Languages for High-Performance Reconfigurable Computing. In: 16th
International Symposium on Field-Programmable Custom Computing Machines.
pp- 23-30 (2008)

DRC Computer Corporation: DRC Coprocessor System User’s Guide (April 2009),
v3.1

Goddeke, D., Wobker, H., Strzodka, R., Mohd-Yusof, J., McCormick, P., Turek,
S.: Co-processor acceleration of an unmodified parallel solid mechanics code with
FEASTGPU. Int. J. Comput. Sci. Eng. 4(4), 254 269 (2009)

. Herbordt, M.,  Sukhwani, B., Chiu, M., Khan, M.A:: Produc-

tion Floating Point Applications on FPGAs. online (July 2009),
http://saahpc.ncsa.illinois.edu/papers/Herbordt _paper.pdf, symposium on
Application Accelerators in High Performance Computing (SAAHPC’09)
Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards 49(6), 409-436 (December
1952)

Lopes, A.R., Constantinides, G.A., Kerrigan, E.C.: A floating-point solver for band
structured linear equations. In: ICECE Technology, 2008. FPT 2008. International
Conference on. pp. 353-356 (October 2008)

Saad, Y.: Iterative methods for sparse linear systems. STAM, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 2. ed. edn. (2003), includes biblio-
graphical references and index

Storaasli, O., Yu, W., Strenski, D., Maltby, J.: Performance Evaluation of FPGA-
Based Biological Applications. Online (May 2007), proc Cray Users Group’07



recent issues

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

2011-12

2011-11

2011-10

2011-09

2011-08

2011-07

2011-06

2011-05

2011-04

2011-03

2011-02

2011-01

2010-07

2010-06

Preprint Series of the Engineering Mathematics and Computing Lab

Vincent Heuveline, Gudrun Thater: Proceedings of the 4th EMCL-Workshop Numerical
Simulation, Optimization and High Performance Computing

Thomas Gengenbach, Vincent Heuveline, Mathias J. Krause: Numerical Simulation of
the Human Lung: A Two—scale Approach

Vincent Heuveline, Dimitar Lukarski, Fabian Oboril, Mehdi B. Tahoori,
Jan-Philipp Weiss: Numerical Defect Correction as an Algorithm-Based Fault
Tolerance Technique for Iterative Solvers

Vincent Heuveline, Dimitar Lukarski, Nico Trost, Jan-Philipp Weiss: Parallel
Smoothers for Matrix-based Multigrid Methods on Unstructured Meshes Using
Multicore CPUs and GPUs

Vincent Heuveline, Dimitar Lukarski, Jan-Philipp Weiss: Enhanced Parallel
ILU(p)-based Preconditioners for Multi-core CPUs and GPUs — The Power(q)-pattern
Method

Thomas Gengenbach, Vincent Heuveline, Rolf Mayer, Mathias J. Krause, Simon Zimny:
A Preprocessing Approach for Innovative Patient-specific Intranasal Flow Simulations

Hartwig Anzt, Maribel Castillo, Juan C. Fernandez, Vincent Heuveline,
Francisco D. lgual, Rafael Mayo, Enrique S. Quintana-Orti: Optimization of Power
Consumption in the Iterative Solution of Sparse Linear Systems on Graphics Processors

Hartwig Anzt, Maribel Castillo, José I. Aliaga, Juan C. Fernandez, Vincent Heuveline,
Rafael Mayo, Enrique S. Quintana-Orti: Analysis and Optimization of Power
Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and
Many-core Platforms

Vincent Heuveline, Michael Schick: A local time—dependent Generalized Polynomial
Chaos method for Stochastic Dynamical Systems

Vincent Heuveline, Michael Schick: Towards a hybrid numerical method using
Generalized Polynomial Chaos for Stochastic Differential Equations

Panagiotis Adamidis, Vincent Heuveline, Florian Wilhelm: A High-Efficient Scalable
Solver for the Global Ocean/Sea-lce Model MPIOM

Hartwig Anzt, Maribel Castillo, Juan C. Fernandez, Vincent Heuveline, Rafael Mayo,
Enrique S. Quintana-Orti, Bjorn Rocker: Power Consumption of Mixed Precision in the
Iterative Solution of Sparse Linear Systems

Werner Augustin, Vincent Heuveline, Jan-Philipp Weiss: Convey HC-1 Hybrid Core
Computer — The Potential of FPGAs in Numerical Simulation

Hartwig Anzt, Werner Augustin, Martin Baumann, Hendryk Bockelmann,

Thomas Gengenbach, Tobias Hahn, Vincent Heuveline, Eva Ketelaer, Dimitar Lukarski,
Andrea Otzen, Sebastian Ritterbusch, Bjorn Rocker, Staffan Ronnds, Michael Schick,
Chandramowli Subramanian, Jan-Philipp Weiss, Florian Wilhelm: HiFlow3 — A Flexible
and Hardware-Aware Parallel Finite Element Package

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a
preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.



