26 research outputs found
Comment on piNN Coupling from High Precision np Charge Exchange at 162 MeV
In this updated and expanded version of our delayed Comment we show that the
np backward cross section, as presented by the Uppsala group, is seriously
flawed (more than 25 sd.). The main reason is the incorrect normalization of
the data. We show also that their extrapolation method, used to determine the
charged piNN coupling constant, is a factor of about 10 less accurate than
claimed by Ericson et al. The large extrapolation error makes the determination
of the coupling constant by the Uppsala group totally uninteresting.Comment: 5 pages, latex2e with a4wide.sty. This is an updated and extended
version of the Comment published in Phys. Rev. Letters 81, 5253 (1998
Charge-dependent nucleon-nucleon potential from chiral effective field theory
We discuss charge symmetry and charge independence breaking in a chiral
effective field theory approach for few-nucleon systems based on a modified
Weinberg power counting. We construct a two-nucleon potential with bound and
scattering states generated by means of a properly regularized
Lippmann-Schwinger equation. We systematically introduce strong
isospin-violating and electromagnetic operators in the theory. We use standard
procedures to treat the Coulomb potential between two protons in momentum
space. We present results for phase shifts in the proton-proton, the
neutron-proton and the neutron-neutron systems. We discuss the various
contributions to charge dependence and charge symmetry breaking observed in the
nucleon-nucleon scattering lengths.Comment: 28 pages, 11 figure
Parity-Violating Interaction Effects I: the Longitudinal Asymmetry in pp Elastic Scattering
The proton-proton parity-violating longitudinal asymmetry is calculated in
the lab-energy range 0--350 MeV, using a number of different, latest-generation
strong-interaction potentials--Argonne V18, Bonn-2000, and Nijmegen-I--in
combination with a weak-interaction potential consisting of rho- and
omega-meson exchanges--the model known as DDH. The complete scattering problem
in the presence of parity-conserving, including Coulomb, and parity-violating
potentials is solved in both configuration- and momentum-space. The predicted
parity-violating asymmetries are found to be only weakly dependent upon the
input strong-interaction potential adopted in the calculation. Values for the
rho- and omega-meson weak coupling constants and
are determined by reproducing the measured asymmetries at 13.6 MeV, 45 MeV, and
221 MeV.Comment: 24 pages, 8 figures, submitted to Physical Review
The two-nucleon system at next-to-next-to-next-to-leading order
We consider the two-nucleon system at next-to-next-to-next-to-leading order
(N^3LO) in chiral effective field theory. The two-nucleon potential at N^3LO
consists of one-, two- and three-pion exchanges and a set of contact
interactions with zero, two and four derivatives. In addition, one has to take
into account various isospin-breaking and relativistic corrections. We employ
spectral function regularization for the multi-pion exchanges. Within this
framework, it is shown that the three-pion exchange contribution is negligibly
small. The low-energy constants (LECs) related to pion-nucleon vertices are
taken consistently from studies of pion-nucleon scattering in chiral
perturbation theory. The total of 26 four-nucleon LECs has been determined by a
combined fit to some np and pp phase shifts from the Nijmegen analysis together
with the nn scattering length. The description of nucleon-nucleon scattering
and the deuteron observables at N^3LO is improved compared to the one at NLO
and NNLO. The theoretical uncertainties in observables are estimated based on
the variation of the cut-offs in the spectral function representation of the
potential and in the regulator utilized in the Lippmann-Schwinger equation.Comment: 62 pp, 13 fig
Baryon-baryon interactions in the SU6 quark model and their applications to light nuclear systems
Interactions between the octet-baryons (B8) in the spin-flavor SU6 quark
model are investigated in a unified coupled-channels framework of the
resonating-group method (RGM). The interaction Hamiltonian for quarks consists
of the phenomenological confinement potential, the color Fermi-Breit
interaction with explicit flavor-symmetry breaking (FSB), and effective-meson
exchange potentials of scalar-, pseudoscalar- and vector-meson types. The model
parameters are determined to reproduce the properties of the nucleon-nucleon
(NN) system and the low-energy cross section data for the hyperon-nucleon (YN)
interactions. The NN phase shifts and many observables for the NN and YN
interactions are nicely reproduced. Properties of these B8 B8 interactions are
analyzed through the G-matrix calculations. The B8 B8 interactions are then
applied to some of few-baryon systems and light Lambda-hypernuclei in a
three-cluster Faddeev formalism using two-cluster RGM kernels. An application
to the three-nucleon system shows that the quark-model NN interaction can give
a sufficient triton binding energy with little room for the three-nucleon
force. The hypertriton Faddeev calculation indicates that the attraction of the
Lambda N interaction in the 1S0 state is only slightly more attractive than
that in the 3S1 state. In the application to the alpha alpha Lambda system, the
energy spectrum of 9 Lambda Be is well reproduced using the alpha alpha RGM
kernel. The very small spin-orbit splitting of the 9 Lambda Be excited states
is also discussed. In the Lambda Lambda alpha Faddeev calculation, the NAGARA
event for 6 Lambda Lambda He is found to be consistent with the quark-model
Lambda Lambda interaction.Comment: 77 pages, 33 figures, review article to be published in Prog. Part.
Nucl. Phy
A Realistic Description of Nucleon-Nucleon and Hyperon-Nucleon Interactions in the SU_6 Quark Model
We upgrade a SU_6 quark-model description for the nucleon-nucleon and
hyperon-nucleon interactions by improving the effective meson-exchange
potentials acting between quarks. For the scalar- and vector-meson exchanges,
the momentum-dependent higher-order term is incorporated to reduce the
attractive effect of the central interaction at higher energies. The
single-particle potentials of the nucleon and Lambda, predicted by the G-matrix
calculation, now have proper repulsive behavior in the momentum region q_1=5 -
20 fm^-1. A moderate contribution of the spin-orbit interaction from the
scalar-meson exchange is also included. As to the vector mesons, a dominant
contribution is the quadratic spin-orbit force generated from the rho-meson
exchange. The nucleon-nucleon phase shifts at the non-relativistic energies up
to T_lab=350 MeV are greatly improved especially for the 3E states. The
low-energy observables of the nucleon-nucleon and the hyperon-nucleon
interactions are also reexamined. The isospin symmetry breaking and the Coulomb
effect are properly incorporated in the particle basis. The essential feature
of the Lambda N - Sigma N coupling is qualitatively similar to that obtained
from the previous models. The nuclear saturation properties and the
single-particle potentials of the nucleon, Lambda and Sigma are reexamined
through the G-matrix calculation. The single-particle potential of the Sigma
hyperon is weakly repulsive in symmetric nuclear matter. The single-particle
spin-orbit strength for the Lambda particle is very small, in comparison with
that of the nucleons, due to the strong antisymmetric spin-orbit force
generated from the Fermi-Breit interaction.Comment: Revtex v2.09, 69 pages with 25 figure
The high-precision, charge-dependent Bonn nucleon-nucleon potential (CD-Bonn)
We present a charge-dependent nucleon-nucleon (NN) potential that fits the
world proton-proton data below 350 MeV available in the year of 2000 with a
chi^2 per datum of 1.01 for 2932 data and the corresponding neutron-proton data
with chi^2/datum = 1.02 for 3058 data. This reproduction of the NN data is more
accurate than by any phase-shift analysis and any other NN potential. The
charge-dependence of the present potential (that has been dubbed `CD-Bonn') is
based upon the predictions by the Bonn Full Model for charge-symmetry and
charge-independence breaking in all partial waves with J <= 4. The potential is
represented in terms of the covariant Feynman amplitudes for one-boson exchange
which are nonlocal. Therefore, the off-shell behavior of the CD-Bonn potential
differs in a characteristic and well-founded way from commonly used local
potentials and leads to larger binding energies in nuclear few- and many-body
systems, where underbinding is a persistent problem.Comment: 69 pages (RevTex) including 20 tables and 9 figures (ps files
Role of heavy-meson exchange in pion production near threshold
Recent calculations of -wave pion production have severely underestimated
the accurately known \ total cross section near
threshold. In these calculations, only the single-nucleon axial-charge operator
is considered. We have calculated, in addition to the one-body term, the
two-body contributions to this reaction that arise from the exchange of mesons.
We find that the inclusion of the scalar -meson exchange current (and
lesser contributions from other mesons) increases the cross section by about a
factor of five, and leads to excellent agreement with the data. The results are
neither very sensitive to changes in the distorting potential that generates
the wave function, nor to different choices for the meson-nucleon form
factors. We argue that \ data provide direct
experimental evidence for meson-exchange contributions to the axial current.Comment: 28 Pages, IU-NTC #93-0
On the pion-nucleon coupling constant
In view of persisting misunderstanding about the determination of the
pion-nucleon coupling constants in the Nijmegen multienergy partial-wave
analyses of pp, np, and pbar-p scattering data, we present additional
information which may clarify several points of discussion. We comment on
several recent papers addressing the issue of the pion-nucleon coupling
constant and criticizing the Nijmegen analyses.Comment: 19 pages, Nijmegen preprint THEF-NYM-92-0