76 research outputs found

    Rechargeable Calcium–Sulfur Batteries Enabled by an Efficient Borate-Based Electrolyte

    Get PDF
    Rechargeable metal–sulfur batteries show great promise for energy storage applications because of their potentially high energy and low cost. The multivalent‐metal based electrochemical system exhibits the particular advantage of the feasibility of dendrite‐free metal anode. Calcium (Ca) represents a promising anode material owing to the low reductive potential, high capacity, and abundant natural resources. However, calcium–sulfur (Ca–S) battery technology is in an early R&D stage, facing the fundamental challenge to develop a suitable electrolyte enabling reversible electrochemical Ca deposition, and at the same time, sulfur redox reactions in the system. Herein, a study of a room‐temperature Ca–S battery by employing a stable and efficient calcium tetrakis(hexafluoroisopropyloxy) borate Ca[B(hfip)4_{4}]2_{2} electrolyte is presented. The Ca–S batteries exhibit a cell voltage of ≈2.1 V (close to its thermodynamic value) and good reversibility. The mechanistic studies hint at a redox chemistry of sulfur with polysulfide/sulfide species involved in the Ca‐based system

    Genomic Regions Associated with Root Traits under Drought Stress in Tropical Maize (Zea mays L.)

    Get PDF
    An association mapping panel, named as CIMMYT Asia association mapping (CAAM) panel, involving 396 diverse tropical maize lines were phenotyped for various structural and functional traits of roots under drought and well-watered conditions. The experiment was conducted during Kharif (summer-rainy) season of 2012 and 2013 in root phenotyping facility at CIMMYT-Hyderabad, India. The CAAM panel was genotyped to generate 955, 690 SNPs through GBS v2.7 using Illumina Hi-seq 2000/2500 at Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. GWAS analysis was carried out using 331,390 SNPs filtered from the entire set of SNPs revealed a total of 50 and 67 SNPs significantly associated for root functional (transpiration efficiency, flowering period water use) and structural traits (rooting depth, root dry weight, root length, root volume, root surface area and root length density), respectively. In addition to this, 37 SNPs were identified for grain yield and shoot biomass under well-watered and drought stress. Though many SNPs were found to have significant association with the traits under study, SNPs that were common for more than one trait were discussed in detail. A total 18 SNPs were found to have common association with more than one trait, out of which 12 SNPs were found within or near the various gene functional regions. In this study we attempted to identify the trait specific maize lines based on the presence of favorable alleles for the SNPs associated with multiple traits. Two SNPs S3_128533512 and S7_151238865 were associated with transpiration efficiency, shoot biomass and grain yield under well-watered condition. Based on favorable allele for these SNPs seven inbred lines were identified. Similarly, four lines were identified for transpiration efficiency and shoot biomass under drought stress based on the presence of favorable allele for the common SNPs S1_211520521, S2_20017716, S3_57210184 and S7_130878458 and three lines were identified for flowering period water-use, transpiration efficiency, root dry weight and root volume based on the presence of favorable allele for the common SNPs S3_162065732 and S3_225760139

    Genomic-regions associated with cold stress tolerance in Asia-adapted tropical maize germplasm

    Get PDF
    Maize is gaining impetus in non-traditional and non-conventional seasons such as off-season, primarily due to higher demand and economic returns. Maize varieties directed for growing in the winter season of South Asia must have cold resilience as an important trait due to the low prevailing temperatures and frequent cold snaps observed during this season in most parts of the lowland tropics of Asia. The current study involved screening of a panel of advanced tropically adapted maize lines to cold stress during vegetative and flowering stage under field conditions. A suite of significant genomic loci (28) associated with grain yield along and agronomic traits such as flowering (15) and plant height (6) under cold stress environments. The haplotype regression revealed 6 significant haplotype blocks for grain yield under cold stress across the test environments. Haplotype blocks particularly on chromosomes 5 (bin5.07), 6 (bin6.02), and 9 (9.03) co-located to regions/bins that have been identified to contain candidate genes involved in membrane transport system that would provide essential tolerance to the plant. The regions on chromosome 1 (bin1.04), 2 (bin 2.07), 3 (bin 3.05–3.06), 5 (bin5.03), 8 (bin8.05–8.06) also harboured significant SNPs for the other agronomic traits. In addition, the study also looked at the plausibility of identifying tropically adapted maize lines from the working germplasm with cold resilience across growth stages and identified four lines that could be used as breeding starts in the tropical maize breeding pipelines

    Synthesis of titanium decorated graphene for renewable energy applications

    Get PDF
    Reduced graphene oxide (RGO) was prepared from natural graphite by Hummers method. Few layers graphene was decorated with titanium by an incipient wetness impregnation method. The pristine graphene shows hydrogen storage capacity equal to 1.3 wt % while graphene decorated by titanium (RGO-Ti) enhanced hydrogen storage capacity to 1.4 wt%. We showed that titanium addition improved hydrogen storage capacity by chemical interactions. These interactions can be used for fabrication of different graphene-based materials as potential candidates for developing new absorbents for energy application

    Why monitor the neonatal brain-that is the important question

    Get PDF
    A key goal of neonatal neurocritical care is improved outcomes, and brain monitoring plays an essential role. The recent NEST trial(1) reported no outcome benefits using aEEG monitoring compared to clinical seizure identification among neonates treated for seizures. However, the study failed to prove the effects of monitoring on seizure treatment in the first place.Non peer reviewe

    Maize for Changing Climate - Chasing the Moving Target

    Get PDF
    The average annual growth rate of harvested maize area from 1993 to 2013 was 2.7% in Africa, 3.1% in Asia, and 4.6% in Latin America (FAOSTAT, 2018). Maize has emerged as the cereal with largest global production, which surpassed rice in 1996 and wheat in 1997, and its production is increasing at twice the annual rate of rice and three times that of wheat (Fischer et al., 2014). Among cereals, including rice, wheat and other coarse cereal, maize has recorded highest increase in area and productivity during 2006-2015 and is projected to keep the momentum during 2016-2025 (OECD/FAO, 2016). Asia, with its 31% share in global maize production from about 34.0% of the total global area harvested, is the second largest maize producer in the world. The current decade continued impressive growth in maize production, as all the sub-regions showed significant increase in maize production (Figure 1), including Southeast Asia -10.8%, Southern Asia - 27.3% and East Asia - 30.6%, which resulted in an overall 27.7% maize production increase in Asia within a short period of 2010-2016 (FAOSTAT, 2018). These gains in maize production were contributed by increase in productivity per unit area and increase in maize growing areas in some countries

    Stress-resilient maize for climate-vulnerable ecologies in the Asian tropics

    Get PDF
    Most parts of the Asian tropics are hotspots of climate change effects and associated weather variabilities. One of the major challenges with climate change is the uncertainty and inter-annual variability in weather conditions as crops are frequently exposed to different weather extremes within the same season. Therefore, agricultural research must strive to develop new crop varieties with inbuilt resilience towards variable weather conditions rather than merely tolerance to individual stresses in a specific situation and/or at a specific crop stage. C4 crops are known for their wider adaptation to range of climatic conditions. However, recent climatic trends and associated variabilities seem to be challenging the threshold limit of wider adaptability of even C4 crops like maize. In collaboration with national programs and private sector partners in the region, CIMMYT-Asia maize program initiated research for development (R4D) projects largely focusing on saving achievable yields across range of variable environments by incorporating reasonable levels of tolerance/resistance to major abiotic and biotic stresses without compromising on grain yields under optimal growing conditions. By integrating novel breeding tools like - genomics, double haploid (DH) technology, precision phenotyping and reducing genotype × environment interaction effects, a new generation of maize germplasm with multiple stress tolerance that can grow well across variable weather conditions were developed. The new maize germplasm were targeted for stress-prone environments where maize is invariability exposed to a range of sub-optimal growing conditions, such as drought, heat, waterlogging and various virulent diseases. The overarching goal of the stress-resilient maize program has been to achieve yield potential with a downside risk reduction
    • 

    corecore