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Abstract

An association mapping panel, named as CIMMYT Asia association mapping (CAAM)

panel, involving 396 diverse tropical maize lines were phenotyped for various structural and

functional traits of roots under drought and well-watered conditions. The experiment was

conducted during Kharif (summer-rainy) season of 2012 and 2013 in root phenotyping facil-

ity at CIMMYT-Hyderabad, India. The CAAM panel was genotyped to generate 955, 690

SNPs through GBS v2.7 using Illumina Hi-seq 2000/2500 at Institute for Genomic Diversity,

Cornell University, Ithaca, NY, USA. GWAS analysis was carried out using 331,390 SNPs

filtered from the entire set of SNPs revealed a total of 50 and 67 SNPs significantly associ-

ated for root functional (transpiration efficiency, flowering period water use) and structural

traits (rooting depth, root dry weight, root length, root volume, root surface area and root

length density), respectively. In addition to this, 37 SNPs were identified for grain yield and

shoot biomass under well-watered and drought stress. Though many SNPs were found to

have significant association with the traits under study, SNPs that were common for more

than one trait were discussed in detail. A total 18 SNPs were found to have common associ-

ation with more than one trait, out of which 12 SNPs were found within or near the various

gene functional regions. In this study we attempted to identify the trait specific maize lines

based on the presence of favorable alleles for the SNPs associated with multiple traits. Two

SNPs S3_128533512 and S7_151238865 were associated with transpiration efficiency,

shoot biomass and grain yield under well-watered condition. Based on favorable allele for

these SNPs seven inbred lines were identified. Similarly, four lines were identified for tran-

spiration efficiency and shoot biomass under drought stress based on the presence of

favorable allele for the common SNPs S1_211520521, S2_20017716, S3_57210184 and

S7_130878458 and three lines were identified for flowering period water-use, transpiration

efficiency, root dry weight and root volume based on the presence of favorable allele for the

common SNPs S3_162065732 and S3_225760139.
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Introduction

In Asian tropics maize is largely (about 80%) grown as rain-fed crop, which is prone to face
vagaries of monsoon rains associated with an array of abiotic and biotic constraints. Erratic/
un-even distribution patterns of monsoon rain occasionally causes drought at different crop
growth stage(s), which is identified as a factor responsible for year-to-year fluctuation in pro-
duction of rainfed maize in Asian tropics[1]. Drought has been identified as the most impor-
tant abiotic stress for the Asian region and addressing the problem of drought has been
estimated to provide the highest technical returns to rainfed maize research and development
investments in Asia [2]. While drought negatively affects all stages of maize growth and pro-
duction, the reproductive stage particularly between tassel emergence and early grain filling, is
the most sensitive to drought stress [3].

Past efforts in improving grain yield under water-limited conditions were accomplished by
selecting for combination of traits such as increasing shoot biomass, shifting ratio between har-
vested grain vs shoot biomass, leaf surface area, number of tillers, earlier flowering etc. [4].
However, the real driving force of these above ground traits is root system and their functional
properties that set the limits on shoot functions [5,6]. One of the strategies for improving yields
in drought-prone rainfed system, when water availability in the root zone constrains crop
growth, is to develop deeper and more profuse rooting system to access water from soil profile
[7,8] and use the available water more efficiently (increasing water productivity) by increasing
the water use efficiency [9,10]. Being first plant part that is exposed to various soil related
stresses, including drought, roots play a pivotal role in adaptation to stress conditions and gov-
ern the overall performance of plants. Root characteristics are often assessed on the basis of
surrogates (for example—leaf rolling), which may not accurately explain the stress-responsive
(or adaptive) structural and functional changes in roots under stress conditions. Understand-
ing how roots respond (or adjust) to stress conditions, and support adaptation to the stress is
crucial for developing stress-resilient genotypes and there are several studies reported signifi-
cant association between root traits and crop performance [11,12]. However, in spite of well-
known role, in general and under drought stress conditions in particular, most often this
important hidden-half is “knowingly” ignored due to complexity involved in studying root
traits [1,13]. In recent years improvements of root traits to increase the efficiencyof foraging
the soil water and maintenance of productivity under drought and other abiotic stress is gain-
ing momentum [5,14–16]. Keeping in view complexity in direct studies on root traits [17], the
alternative for studying the available genotypic variability of such complex traits is to identify
superior alleles through genome-wide association studies (GWAS), and use in forward breed-
ing throughmarker-assisted introgression of desirable genomic regions in elite genetic
background.

Association mapping differs from traditional linkage mapping that uses the ancestral
recombination in natural populations to identify the marker-trait association based on linkage
disequilibrium [18,19]. Effective association analysis to understand the inheritance of targeted
traits can be performedwith availability of abundant phenotypic variation and high density of
polymorphism at the DNA sequence level. Maize, known for its abundant genetic divergence
in nearly every trait of economic and agronomic importance and with the help of high density
genotyping platforms like, Illimina ifinium and genotyping-by-sequencing (GBS) it is possible
to develop millions of marker data points distributed throughout the genome for conducting
an effectiveGWAS [20,21]. GWAS reports in maize are available for flowering time [22], ker-
nel shape, 100 seed weight [23], kernel quality [24], functionalmechanisms related to drought
[25] and several other target genes for crop improvement [26,27]. Ample number of QTL map-
ping studies are available for several maize root traits [28–33], few GWAS studies were
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available for maize root traits in seedling stage [8] but to our knowledge no GWAS study is
done for the root functional and structural traits at later growth stage. In this study, CIMMYT
Asia associationmapping (CAAM) panel was assembled using elite tropical and subtropical
maize genotypes and phenotyped for root functional and structural traits under well-watered
and drought stress conditions at reproductive stage to assess the available genotypic variability
and to identify the significant genomic regions associated with root traits through GWAS stud-
ies, and their use in forward breeding throughmarker-assisted introgression of desirable geno-
mic regions in elite genetic background.

Results

Phenotypic variation among root traits

Substantial variation (P<0.01) was observed among the CAAM panel lines for root functional
traits under drought stress (DS) and well-watered condition (WW) and structural traits under
drought stress. The variation was also significant among agronomic traits under the two water
regimes (Table A in S1 File, Figure A and B in S2 File.). Broad-sense heritability for all the traits
was high across moisture regimes (h >0.7), except anthesis silking interval (ASI) under well-
watered condition (h = 0.41). In general, days to 50%male flowering (AD) was consistent
across drought and well-watered conditions with a narrow variation of about one day. How-
ever, considerable variation was observed in days to 50% silking (SD) that delayed for>5 days
or even no silk emergence in some lines under drought stress. Average grain yield per plant
(GY) was higher (76.98 g/plant) under well-watered conditions, while the range was narrow
under drought stress (0.02 to 108.10 g/plant) compared to well-watered condition (12.50 to
204.57 g/plant). Similar trend was also observed for shoot biomass (SB) with low values under
drought stress (166.49 g/plant) as compared to well-watered condition (191.10 g/plant).

Among root functional traits, variation for both flowering periodwater use (WU) and tran-
spiration efficiency (TE) was more wider under drought stress. WU was less (77.1%) under
drought as compared to well-watered conditions. However, transpiration efficiency (TE) was
higher (114.3%) under drought stress in comparison to well-watered conditions. Root struc-
tural traits under drought stress also revealed highly significant variation among the lines for
all the traits (Table B in S1 File, Figure C in S2 File). Notably, the rooting depth (RD) ranged
from 30.52 cm to 244.0 cm with the mean of 134.54 cm and the root dry weight (RDW) ranged
between 0.84 g and 33.82 g with a mean of 10.63g.

A positive and significant relationship (p>0.001) was observed among structural and func-
tional traits under drought stress condition, with an exception of root-length density (RLD),
which seemed fairly independent of most of the functional root traits. Some of the noteworthy
associations observed from the drought dataset were, i) between functional traits (WU and TE)
and structural traits: root dry weight (RDW) [0.42 and 0.30], root volume (RV) [0.50 and 0.27]
followed by rooting depth (RD) [0.27 and 0.27] and ii) between functional traits (WU and TE)
and agronomic traits: grain yield (GY) [0.30 and 0.70], shoot biomass (SB) [0.60 and 0.99] and
days to 50% male flowering (AD) [0.36 and 0.17] (Table C in S1 File). These strong positive
associations observedunder drought suggest that these traits, at least partly, might share com-
mon genomic regions. Under well-watered condition the root functional traits had significant
positive correlation with grain yield and total plant biomass (Table C in S1 File).

Molecular diversity and linkage disequilibrium

DAPC (Discriminant Analysis of Principal Components) analysis helped in establishing the
population structure of the CAAM panel (Fig 1). DAPC was applied on the genetic data of the
CAAM panel, which clustered these lines into four groups based on the first three PCs (Fig 1
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Inset). The largest among the four group was group 3 with 345 lines predominantly with lines
from lowland (64% of group and 91% of total panel) followed by lines from sub-tropical (23%
of group and 89% of total panel). The groups 1, 2 and 4 were with less number of lines with
mix of all adoption patterns. The whole genome linkage disequilibriumdecay (LD) estimated
from a random set of markers spanning across genome was observed at 5.6 kb (at r2 = 0.2) and
16 kb (at r2 = 0.1), with a general pattern of LD decay observed in most of the tropical maize
germplasm (Fig 2). To improve the prediction accuracy and to eliminate the false positive asso-
ciations, both PCA and the kinship matrix was used in the model.

Mapping for functional root traits under well-watered condition

A total of 24 highly significantmarker-trait associations (P =�10−5) were observed for the
root functional traits [13 for WU and 11 for TE] under well-watered condition (Table D in S1
File). The phenotypic variation accounted for these traits by the SNPs ranged from 4 to 6%
(Table 1). Interestingly several of these associations mapped to gene models that have been
reported to have biological functions in response to stress or are components of photophos-
phorylation (Table D in S1 File). Among these associations, the following SNPs S3_210065070,
S5_174937829, S5_206628645 and S7_141513891 are of particular importance for WU and

Fig 1. Clustering of CAAM panel based on discriminant analysis of principal component using the genetic

data.

doi:10.1371/journal.pone.0164340.g001
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Fig 2. Linkage disequilibrium (LD) decay in the CAAM panel based on the SNPs

doi:10.1371/journal.pone.0164340.g002

Table 1. Summary of Marker trait association (MTAs) under well-watered (WW) and drought stress condition (DS). W- Well watered condition, DS-

Drought stress condition, GY- Grain yield, SB- Shoot biomass, WU- Flowering period water use, TE- Transpiration efficiency, RD-Rooting depth, RDW-Root

dry weight, RL-Root length, RSA-Root surface area, RV- Root volume, RLD- Root length density, PV- phenotypic variation.

Traits No. of MTAs under WW No. of MTAs under DS Total No. of MTAs P-Value range Range of PV explained

GY 15 13 28 10−6 to 10−05 0.04 to 0.06

SB 10 12 22 10−6 to 10−05 0.04 to 0.06

WU 13 13 26 10−6 to 10−05 0.04 to 0.06

TE 11 13 24 10−6 to 10−05 0.04 to 0.06

RD 13 13 10−8 to 10−05 0.04 to 0.05

RDW 11 11 10−7 to 10−05 0.05 to 0.07

RL 10 10 10−7 to 10−06 0.05 to 0.07

RSA 11 11 10−7 to 10−06 0.05 to 0.07

RV 11 11 10−08 to 10−06 0.05 to 0.07

RLD 11 11 10−6 to 10−05 0.04 to 0.06

Total 49 118 167

doi:10.1371/journal.pone.0164340.t001
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SNPs S3_176556741, S3_225760139, S5_163230017, S6_158259266, S8_10392703, S9_113
423602, S10_134418000 for TE, in lieu of their i) direct association with the trait of interest and
ii) close association with gene models associated with stress response or water use traits

Mapping for functional and structural traits under drought stress

condition

Under drought stress a total of 26 significantly associated SNPs were identified for WU (13
SNPs) and TE (13 SNPs) (Table 1). The phenotypic variation explained by these SNPs ranged
between 4 and 6%. The SNPs, S1_256693112, S2_150015274, S3_140832594, S3_162065732,
S4_177880350, S8_1677226454, S8_2079947, S9_117308991 associated withWUwere found
in different gene models GRMZM2G100448, GRMZM2G31470, GRMZM2G089638, GRMZM
2G180406, GRMZM2G300624, GRMZM2G350020, GRMZM2G417125 and GRMZM2G11
7956 and the SNPs, S1_211520521 (GRMZM2G131205), S1_295003474 (GRMZM2G138382),
S5_187657126 (GRMZM2G120922), S7_137170071 (GRMZM2G429118) and S7_17332809
(GRMZM2G349655) associated with TE were found in different gene model had the biological
functions related to various drought tolerant mechanisms like osmotic adjustment, signaling
pathways etc. (Table D in S1 File).

For root structural traits a total of 67 significantly associated (P =�10−5) SNPs were identi-
fied:13 SNPs for rooting depth (RD), 11 SNPs for root dry weight (RDW), root surface area
(RSA), root volume (RV) and root-length density (RLD) and 10 SNPs for root length (RL).
These SNPs accounted for the variation of 4 to 8% for these structural traits. In specific SNPs,
S1_285063931, S1_119655560, S3_219690579, S5_190243480, S10_25666760 associated with
RD; SNPs S9_131567840 and S9_151573444 associated with RL, and one SNP S5_206615952
associated with RSA; S2_43559512, S2_198898603, S3_162065732 associated with RDWwere
found within the different gene models with various biological functions like stress signaling,
stress related protein and ion transport absorption and regulation of stress related transcription
factors.

Common association for agronomic and root traits

Though several SNPs (167 SNPs) showed significant association, SNPs that were common for
more than one trait gains more important from breeding point of view. In present study three
SNPs (S3_12853321, S3_176556741 and S7_151238865), each commonly associated with grain
yield (GY), shoot biomass (SB) and TE (Fig 3) and four SNPs (S2_140892540, S3_225760139,
S5_59423673 and S8_10392703) each were found to be associated with SB and TE under well-
watered conditions (Table 2). Under drought stress 9 SNPs each were common betweenTE
and SB. Out of these 9 SNPs, 8 were found within different gene model (Table 2 and Table D in
S1 File).

Among the SNPs associated with root structural traits two SNPs each located on chromo-
some 3 (S3_162065732 and S3_225760139) were observed common betweenWU and RDW
and between SB, TE and RV, respectively (Fig 4). Among these associations for functional and
structural traits, favorable associations have been largely observed in chromosome 3 suggesting
the presence of either a common gene or gene clusters responsible for drought stress tolerance
in maize.

Discussion

Breeding for drought tolerance is one of the priority traits for most of the maize breeding pro-
grams in tropics. In general, drought tolerance depends on root structural traits for extracting
the water and nutrient from soil [34,35] and root functional traits for effective utilization of
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available water [36]. The success of breeding for drought tolerance is limited with conventional
breeding alone, especially in the present condition of rapid and catastrophic changes in weather
patterns [20]. Integration of advances in genomics tools and resources with conventional
breedingmight improve the ability to identify the desirable unique or rare alleles from the
germplasm collection [37]. In the present study, GWAS was carried on CAAM panel, which
was genotyped using GBS platform and phenotyped for root structural and functional traits
under drought and well-watered condition. Exploiting this variability and identifying signifi-
cant marker-trait associations based on GWAS might support breeding for drought tolerant
maize through marker-assisted introgression of key genomic regions related to promising root
traits into elite germplasm.

Fig 3. Genome wide association scans for markers- S3_128533521 and S7_151238865 associated with Grain yield (GY), Shoot biomass (SB)

and Transpiration efficiency (TE) under well water condition.

doi:10.1371/journal.pone.0164340.g003
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Phenotypic variation for root functional traits was significantly high under both well-
watered and drought stress conditions. The range of WU was wider, while it was narrow in
case of TE under drought stress in comparison to well-watered condition. Under well-watered
conditions the cylinders were maintained at optimal moisture (at field capacity), all the geno-
types transpire at similar rate without significant variation. However, under drought stress, the
rate of transpiration and biomass production varied significantly depending upon drought tol-
erance among genotypes and water-use pattern. The range various traits indicated that there is
substantial variation exists among maize germplasm for these traits. High broad-sense herita-
bility (h>0.5) for both functional and structural traits indicated that these traits are highly
repeatable. Similar heritability values for roots traits under controlled and field conditions at
various growth stages were also reported in previous studies [8,38,39]. High heritability for
these highly dynamic traits might be due to the fact that the experiment was conducted in
semi-controlled condition and also because of high accuracy of the root image analysis soft-
ware. Relationship between root functional and structural traits with the grain yield suggested
that these traits play significant role in overall plant performance of genotypes, including final
grain yields under drought stress.

In general, larger LD block and slower rate of LD decay results in low mapping resolution.
In diverse maize germplasm the LD decay occurs rapidly within few kilo-base pairs due to high
rate of recombination [40–42]. In our study we obtained LD decay of 5.6 kb (r2 = 0.2) in
CAAM panel using GBS data on sub-tropical and tropical lines. Several studies using GBS for
large number of tropical and temperate maize germplasm indicated that higher mapping reso-
lution can be obtained from tropical germplasm [21] because LD decay is faster in tropical
germplasm than in temperate germplasm [43,44].

In present study, a total of 50 SNPs for root functional traits, 67 SNPs for root structural
traits and 28 SNPs were identified for grain yield and shoot biomass under well-watered and
drought stress condition. Though several individual SNPs are associated with various root

Table 2. List of Significant SNPs associated with more than one functional and structural trait under drought stress (DS) and well-watered condi-

tion (WW). WW- Well watered condition, DS- Drought stress condition, GY- Grain yield, SB- Shoot biomass, WU- Flowering period water use, TE- Transpi-

ration efficiency, RDW-Root dry weight, RV- Root volume, PVE- phenotypic variation, Chr- Chromosome Number, MAF-Minor allele frequency

S.No Trait name Condition SNP Chr Position (Mb) Favorable allele MAF MLM P-Value PVE Gene Name

1 GY + SB WW S2_215946315 2 215.95 T 0.14 1.2x10-05 0.05

2 GY + SB + TE WW S3_128533521 3 128.53 A 0.05 6.5x10-06 0.05

3 GY + SB + TE WW S3_176556741 3 176.56 T 0.12 2.7x10-05 0.05 GRMZM2G426108

4 GY + SB + TE WW S7_151238865 7 151.24 G 0.38 3.2x10-05 0.05

5 SB + TE WW S2_140892540 2 140.89 T 0.04 1.5x10-05 0.05

6 SB + TE WW S5_59423673 5 59.42 A 0.15 2.2x10-06 0.06

7 SB + TE WW S8_10392703 8 10.39 G 0.07 3.4x10-06 0.06 GRMZM2G374085

8 SB + TE DS S1_21984561 1 21.98 C 0.24 3.6 x 10−05 0.05 GRMZM2G388915

9 SB + TE DS S1_211520521 1 211.52 G 0.18 3.5 x 10−06 0.06 GRMZM2G131205

10 SB + TE DS S2_20017716 2 20.02 T 0.16 8.2x10-05 0.05

11 SB + TE DS S3_57210184 3 57.21 T 0.07 2.9x10-06 0.06 GRMZM2G331811

12 SB + TE DS S5_18624158 5 18.62 T 0.06 4.9x10-05 0.04 GRMZM2G363437

13 SB + TE DS S5_187657126 5 187.66 A 0.11 4.5x10-05 0.04 GRMZM2G120922

14 SB + TE DS S7_130878458 7 130.88 T 0.38 5.4x10-06 0.05 AC198894.4_FGT002

15 SB + TE DS S7_137170071 7 137.17 C 0.03 9.6x10-06 0.05 GRMZM2G429118

16 SB + TE DS S7_155619721 7 155.62 C 0.04 2.3x10-05 0.05 GRMZM2G158009

17 WU + RDW DS S3_162065732 3 162.07 G 0.17 3.2x10-05 0.05 GRMZM2G180406

18 SB + TE + RV DS S3_225760139 3 225.76 G 0.19 1.9x10-06 0.06 GRMZM2G369956

doi:10.1371/journal.pone.0164340.t002
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functional and structural traits, some of the SNPs were within various gene models, which had
biological functions related to drought tolerance mechanism. Genes found to have significant
associations with target traits could be re-sequenced in a diverse panel of germplasm to identify
causal mutations and the most favorable alleles for trait improvement and to develop simple
PCR-based markers for MAS [45,46].

The SNPs S1_252377015 associated with grain yield under well-watered, S3_162065732
associated withWU and RDW under drought stress and S5_174937829 associated withWU
under well-watered, were mapped with in the bHLH loci viz., bHL43, bHLH 152 and bHLH

Fig 4. Genome wide association scans for markers- S3_162065732 associated with root dry weight (RDW) and flowering period water use (WU)

and S3_225760139 associated with root volume (RV) and Shoot biomass (SB) under drought stress condition.

doi:10.1371/journal.pone.0164340.g004
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32, respectively. Many cellular processes and responses that are important for plant to tolerate
various abiotic stresses were controlled by this bHLH, which is a large family of conserved tran-
scription factors [47]. This has also been known to interact with two other drought-tolerant
genes, bZIP (regulates auxin transport) [48] and MYB light signaling transductions, including
photosynthesis in Arabidopsis thaliana [49]. The SNP S9_117308991 associated withWU
under drought stress was mapped at 0.102kb away from the gene model GRMZM2G117956,
which has the biological function of proline catabolic process. Proline, a “compatible solute”
acts as energy sources during stress conditions and plays a diverse role in stabilizing protein,
membranes, subcellular structures and protecting cellular functions by scavenging reactive
oxygen species [50]. Accumulation of proline under stress condition helps in changing the car-
bon flux through oxidative pentose phosphate pathway (OPPP) that leads to synthesis of nucle-
otides and in turn accelerates cell division upon relieve of stress [51].

The SNPs S3_140832594, S4_25790364, S5_190243480 associated withWU, RDW and RD
under drought stress was co-localizedwith gene models associated with G-protein coupled
receptor signaling pathway. The static nature of plants evolved them to have an efficient system
to respond to the environment fluctuation at membrane level through signal generation and
transduction. Among those the G-protein coupled signal transduction plays a major role [52].
G-proteins are involved in ABA-induced stomatal movements by controlling inward and out-
ward-rectifying potassium current or an anion channel [53], which in turn determines the sto-
matal aperture size by maintaining the guard cell turgor pressure. These individual SNPs
which were associated with various root functional and structural traits found within loci or
close to loci associated with various drought tolerance and avoidance mechanisms could be
developed as gene basedmarkers. Gene-basedmarkers are more accurate than linkedmarkers
for the prediction of phenotype, since the marker–trait association will not be lost during segre-
gation in the course of recurrent breeding selection cycles [42].

Maximum number of SNPs were found on the chromosome 5 (9 SNPs), followed by chro-
mosome 3 and 7 (8 SNPs each) for the root functional traits and for structural traits maximum
number of SNPs were found on Chromosome 1 and 9 (9 SNPs each) followed by chromosome
2 and 7 (8 SNPs each) under well-watered and drought stress condition. On chromosome 7 at
123.61 to 132.68 Mb and on chromosome 3 at 169.75 to 178.23Mb were reported to be the
regions associated with drought tolerance or drought adaptiveness as they harbor 5 and 6 meta
QTLs for grain yield and ASI, respectively under well-watered and drought stress condition
[54]. In the present study on chromosome 7 and 3 the SNPs S7_130878458 at 130.88Mb and
S7_13717001 at 137.17 Mb associated withWUE and SB under drought stress, S7_132080112
at 132.08Mb associated with RSA, S7_133377796 at 133.38Mb associated with RD,
S3_176556741 associated with TE, GY and SB were found in those meta QTL regions. Simi-
larly, the SNPs associated with root structural traits found on the chromosome 1 were also
found in the meta QTL region [55]. Identification of these SNPs associated with root functional
and structural traits within QTL regions related to grain yield under well-watered and drought
stress conditions indicates the contribution of those root traits in grain yield under drought
stress. This suggests that the SNPs identified in these regions could be used in drought toler-
ance breeding for screening and selecting drought tolerant trait donor lines with high yield.

Results from association analysis could be used to predict the best haplotypes across one or
multiple genes for optimum expression of the target trait. Association analysis can help to
determine which one is the best donor, something that linkage analysis cannot, as donors vary
in their background effects in terms of the effects of alleles at other loci that directly or indi-
rectly influence the target trait [19]. In this study we attempted to identify trait specificmaize
lines based on the presence of favorable alleles for the SNPs associated with multiple traits
(Tables 2 and 3). Seven lines were identified for transpiration efficiency, shoot biomass and
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grain yield under well-watered conditions based on the favorable allele for two SNPs S3_1285
33512 and S7_151238865, four lines were identified for transpiration efficiencyand shoot bio-
mass under drought stress based on the presence of favorable allele for the common SNPs
S1_211520521, S2_20017716, S3_57210184 and S7_130878458 and three lines were identified
for flowering periodwater-use, transpiration efficiency, root dry weight and root volume based
on the presence of favorable allele for the common SNPs S3_162065732 and S3_225760139.
These selected lines and SNPs associated with multiple traits and various gene models could be
used as trait donor lines for root function and structural traits after validating them in field
conditions.

Conclusion

The SNPs identified for root traits, directly or indirectly related with drought tolerance mecha-
nism, might help in selecting trait-specific donor lines or lines with favorable allele for multiple
traits. These genes uncover physiological responses and molecularmechanisms related to
drought tolerance. Genes governing several functional traits were identified, including stomatal
closure, reduced water potential, root development, signaling pathways. In addition, breeding
approach using this information upon validation will greatly help to increase our understand-
ing of the genetic architecture of complex traits under drought stress condition. The major
genomic regions with favorable alleles for key roots traits associated with drought tolerance

Table 3. Accessions selected possessing desirable allelic combination for multiple traits and there phenotypic expressions under DS and WW

condition. WW- Well watered condition, DS- Drought stress condition, GY- Grain yield, SB- Shoot biomass, TE- Water use efficiency, WU-Flowering period

water use RDW-Root dry weight, RV-Root volume.

S.

No

Trait and selected accessions Associated SNP DS WW

GY + SB + TE under WW WU TE SB GY WU TE SB GY

1 CL02450-B*5 S3_128533521,

S7_151238865

13.3 3.6 200.6 61.2 17.4 4.2 318.0 125.5

2 (CLQ-RCYQ46 = (CML150xCL-03618)-B-17-2-

2-BxCL-RCY017)-B-23-2-BB-2-B*5

13.8 3.3 176.0 78.1 16.8 3.3 242.2 116.6

3 CML317-2-BBB 14.0 3.2 170.8 75.1 18.1 3.1 227.5 112.0

4 90[SPMATC4/P500(SELY)]#-B-48-4-B*7 15.6 5.0 269.5 101.6 18.6 4.6 307.8 124.9

5 CML284-2-BBB 12.8 4.6 256.8 86.9 18.2 3.5 259.3 121.0

6 CML227-B*6 11.1 3.5 183.2 69.9 19.5 4.2 335.3 127.9

7 WLS-F191-2-1-1-B-1-B*4 13.5 3.4 178.2 71.1 15.8 4.7 327.5 118.0

SB + TE Under DS

8 [M37W/ZM607#bF37sr-2-3sr-6-2-X]-8-2-X-1-BBB-xP84c1F27-

4-3-3-B-1-B]F29-1-2-2x[KILIMAST94A]-30/MSV-03-101-

08-BB-1xP84c1F27-4-1-4-B-3-B]F2-1-2-1-1-1-BxCML486]-1-

1-BB

S1_211520521,

S2_20017716,

S3_57210184,

S7_130878458

14.7 5.5 284.9 97.8 20.1 4.6 310.3 77.3

9 CML452 = Ac8328BNC6-166-1-1-1-B*12 16.8 3.9 214.5 65.2 17.4 3.2 226.0 85.5

10 CML486 = P45c8-76-1-2-1-2-B*12 11.7 3.4 185.0 67.8 17.0 3.3 242.3 106.4

11 CA00102/CA00106-B-12-2-B*4 12.2 3.3 171.6 65.2 17.6 3.1 206.5 57.3

SB + TE under WW

12 CML181-B*5 S2_140892540,

S5_59423673,S8_10392703

14.1 3.2 179.4 46.6 17.4 4.3 317.3 113.5

13 DTPYC9-F46-1-2-1-1-B*4 13.1 3.5 186.0 86.3 16.5 3.3 217.8 111.8

WU+ TE + RDW + RV Under DS WU TE RDW RV

14 CL-RCY023 = (CL-02439*CML286)-B-1-2-2-B*10 S3_162065732,

S3_225760139

13.5 4.0 13.24 81.54 18.1 3.7 252.8 106.9

15 CML171-BBB-1-B*5 14.8 3.2 20.61 176.37 17.5 3.2 243.3 106.9

16 CLRCY030-B*5 11.2 3.2 15.41 123.60 16.1 3.7 295.6 161.0

doi:10.1371/journal.pone.0164340.t003
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can be introgressed into elite and locally adapted genetic background through step-wise
marker-assisted validation-cum-introgression strategy.

Material and Methods

Germplasm

An associationmapping panel, named as CIMMYTAsia associationmapping (CAAM) panel,
involving 396 diverse tropical maize lines (Table E in S1 File) were phenotyped for various
structural and functional aspects of roots. The panel was constituted by involving selected
advanced stage maize inbred lines derived from CIMMYT’s tropical and sub-tropical pools
and populations from Latin America, Africa and Asian maize program. The 396 lines were
selected out of over 1000 lines evaluated in Asian tropics for their general adaptation under
optimal growing conditions. The lines with reasonably good adaptation in Asian tropics were
selected for constituting the CAAM panel, avoiding sister lines or over-representation of lines
derived from any specific pools or populations. Apart from lines from CIMMYT-Asia maize
program, the panel included the lines derived from CIMMYT’s drought tolerant populations,
including Tuxpeno Sequia-C6 (Tropical late white-dent), La Posta Sequia-C7 (Tropical late
white-dent), DTPY-C9 (Tropical medium yellow-flint), Pool-26 Sequia (Tropical late yellow-
flint), DTPW-C9 (Tropical mediumwhite-flint), G18 Sequia C5 (Tropical early yellow-dent)
and Pool16 BN Sequia-C5 (Tropical mediumwhite-dent), which were systematically devel-
oped and improved for drought tolerance through full-sib or S1 recurrent selection scheme
[56]. The panel was phenotyped for various root traits, including root functional traits such as–
flowering periodwater use, transpiration efficiencyunder both drought and well-watered con-
dition, and for root structural traits, including rooting depth, root dry weight, root length, root
volume, root surface area and root length-density under drought stress. Phenotyping was done
during 2012 and 2013 Kharif (summer-rainy) season. During 2012 Kharif the panel was phe-
notyped under drought stress for root functional traits with four replications and for root
structural traits with two replications. During 2013 Kharif the panel was phenotyped for root
functional traits under drought and well-watered conditions with four and two replications,
respectively. In both the seasons the experiment was laid-out in RCBD.

Root trait phenotyping

The experiments were conducted in root phenotyping facility at CIMMYT-Hyderabad, India
(17.3850° N, 78.4867° E and 505 masl), which is based on the lysimetric system that provides
opportunity to directly assess and quantify root traits and their dynamics under various grow-
ing conditions and allows high-precision phenotyping of various root traits. It facilitated the
root study based on a real-timemeasurement of water uptake, water use and an assessment of
variation in root structural traits under different growing condition in the rhizosphere. Plants
were grown in mini-rhizotrons, which was made-up of PVC (Polyvinyl chloride) tube of 25 cm
diameter and 150 cm length, filledwith a mixture of Vertisol + Alfisol + sterilized farm yard
manure in the ratio of 15:5:1 by volume. A PVC end plate was retained at 3.0 cm from the bot-
tom with four screws in a way to retain the soil at the bottom but to freely allow water drainage.
The cylinders had a very similar bulk density to field conditions, close to 1.27, and cylinders
weighed a mean weight of 172 kg. The soil that was used to fill the cylinders was thoroughly
incorporated with ammonium sulfate, urea, muriate of potash and zinc sulphate at the rate of
800, 174, 320 and 53 mg kg-1 soil. A top dressing of 3.0 g urea cylinder-1 was done at 30 and 50
days after sowing.

The PVC tubes were arranged in eight trenches (1.5 m deep, 2.0 m wide and 25 m long) in a
way to match levels of cylinder and outside soil surfaces and separated from one another by a
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distance of approximately 20.0 cm. In this way maize plants were placed at a density of 6.25
plants m-2, matching with plant population close to a field planting density (row-to-row dis-
tance of 60.0 cm and plant-to-plant spacing of 20.0 cm). Border effects were managed by plac-
ing a row of potted plants on all sides of the trenches.Weighing of the cylinders was done by
lifting the cylinders using the metal-collar fixed at the top of the cylinder, with a block-chained
pulley. A S-type load cell (Mettler-Toledo, Geneva, Switzerland) was hooked between the collar
of the cylinder and the pulley. A scale of 200 kg capacity allowed repeated measurements with
accuracy of 20.0 g.

Trial management and stress treatment

In each cylinder three seeds were sown and a measured amount of water (5.0 liters cylinder-1)
was applied as 1st irrigation for germination, and 10 days after sowing thinning was done to
maintain one seedling per cylinder. Metrological parameters such as minimum,maximum
temperature, evaporation and rainfall were recorded on daily basis from date of sowing until
the crop harvest (Table F in S1 File). GDD (Growth degree days) was recorded starting from
date of sowing until the GDD is reaching 550°C. Till that stage a measured amount of water
was applied to maintain optimal moisture conditions in each cylinder. At 550°C GDD each cyl-
inder was saturated with 25.0 liters of water, and there after irrigation was stopped in cylinders
labeled for drought stress treatment, whereas application of measured amount of water was
continued in cylinders labeled for well-watered treatment. In both the treatments soil surface
of the cylinders was covered with polyethylene beads to prevent evaporative loss of moisture
from the soil in cylinders. In this way it was ensured that water loss from the cylinderwas
largely through the transpiration process by the plants. Once the excess water flow stopped
after full-saturation (about after 24hrs) each cylinderwere weighed in both the treatment,
which was noted as initial weight of the cylinder. In well-watered treatment the moisture was
maintained by weighing the cylinders on regular intervals and the amount water lost from the
initial weighing was compensated by adding the loss of water through transpiration process.
However, in drought treatment no irrigation was applied until two weeks after anthesis. This
was followed on individual genotype basis in drought stress treatment, i.e. resuming irrigation
two weeks after completion of male flowering. Before resuming irrigation in drought treatment
a final weight of the cylinderwas recorded. Simultaneously, final cylinderweight for respective
genotype was also recorded under well-watered conditions as well. The difference in initial
weight and final weight were used in calculating the amount of water used during flowering
period under drought stress or well-watered conditions.

Phenotyping root traits

Total amount of water used was accounted until the physiological maturity and the plant bio-
mass was also recorded by harvesting the whole plants (excluding roots). The root functional
traits were calculated as follows:

Flowering period water use ðWU LÞ
¼ Intial weight of the cylinder � f inal weight of the cylinder

Transpiration eff iciency TE gL� 1ð Þ ¼
Shoot biomass ðgÞ

Amount of water transpired ðLÞ

For measuring the root structural traits, cylinders were shifted to root washing area and
adhering soil around the root was carefully removed by passing a fine-jet of water through the
cylinder. After removing the soil, the intact root was taken out of cylinder and washed once
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again with water to remove small solid clades adhered to the roots. Rooting depth (RD) was
measured as the length of root from stem collar to tip of the root. Roots were scanned and digi-
talized as images for measuring the root volume (RV), root surface area (RSA) and root length
(RL) and root length density (RLD) using Shimadzu scanner and analyzing withWinrhizo
software (Winrhizo, Regent Ltd, Canada). Roots were then dried in hot-air oven at 70°C for
three days and root dry weight was recorded. In addition to root functional and structural traits
the plant traits such as—anthesis date, silking date, anthesis-silking interval (ASI) and grain
yield were also recorded in all the experiments.

Genotype data

A total of 955, 690 SNPs were generated through GBS v2.7 using Illumina Hi-seq 2000/2500 at
Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. The physical coordinates
of GBS SNPs was derived from AGPv2. The GBS service provider (Institute for Genomic
Diversity, Cornell University, Ithaca, NY, USA), imputed the missing data points by perform-
ing a partial imputation based on an algorithm that searched for the closest neighbor in small
SNP windows across the entire maize database (~22,000 Zea samples) allowing for 5% mis-
match. The criteria for filtering SNPs for GWAS, PCA and LD analysis were done based on
Suwarno etal., 2015 [57] with slight modifications. Based on criteria of call rate (CR)>0.7 and
with minor allele frequency (MAF)> 0.03, we obtained 331, 390 SNPs from the total SNPs for
association analysis. The marker density for the present associationmapping panel was 1 SNP
per 6.209Kb with minimum gap of 1bp and maximum of 1763.22kb. From this 331,390 SNPs a
subset of 71, 595 high quality SNPs, were filtered by increasing the filtering stringency to
CR>0.95 and MAF>0.1, which were used to derive PCA and Kinship matrices.

Statistical analysis of phenotype data and association analysis

Analysis of variance of root functional and structural traits along with other agronomical traits
was done separately for each year. A combined analysis over the years was done for root func-
tional traits under drought stress condition. Mean values of functional (well water and
drought) and structural traits (drought) was used to estimate the pearson correlation coeffi-
cient and descriptive statistics using Genstat 14th edition [58]. The mean values were used for
GWAS analysis using SNP and Variation Suits v8.x (GoldenHelix, Inc., Bozeman,MT, www.
goldenhelix.com)[59].

The population structure of the panel was evaluated by performing discriminant analysis of
principal component (DAPC) using the ‘adgenet’ library in R software. The extent of genome-
wide linkage disequilibriumwas estimated based on adjacent pairwise r2 values and the physical
distance among the SNPs using ‘nlin’ function in R. To performmixed linear model (MLM)
based association analysis, Principal component analysis and kinship matrix analysis were carried
out using SVS. The models used in the association study were based on visual observationof the
quantile-quantile (Q-Q) plots (Figure D in S2 File.), which was the plots of observed–log10P val-
ues versus expected–log10P values under the null hypothesis that there is no association between
marker and the phenotype[21]. To identify the significant GWAS signalsmultiple criteria filtering
options was used. Top 10 to 15 SNPs were selected based on smallest p value (<10−4), phenotypic
average for homozygous minor allele genotype (DD) (greater or smaller than average based on
trait) and presence of rare allele in more than 11 genotypes (3% of population).

Supporting Information

S1 File. Table A in S1 File. Descriptive statistics for root functional traits and agronomical
traits under well-watered (WW) and drought stress (DS) condition. Table B in S1 File.
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Descriptive statistics for root structural traits under drought stress condition. Table C in S1
File. Correlation coefficient for the agronomical, root functional (drougt stress and well-
watered condition) and structural (Drought stress) traits of CAAM panel. Table D in S1 File.
Marker trait assoication for functional and structural traits under well-watered (WW) and
Drought stress condition (DS). Table E in S1 File. Pedigree details of CIMMYTAsia Associa-
tionMapping (CAAM) panel. Table F in S1 File. Meteorological information for year 2012 and
2013 during the experiment period.
(XLSX)

S2 File. Figure A in S2 File. Frequency distribution of grain yield, total plant biomass, transpi-
ration efficiency and flowering periodwater use under well water condition. Figure B in S2
File. Frequency distribution of grain yield, total plant biomass, transpiration efficiency and
flowering periodwater use under drought stress condition. Figure C in S2 File. Frequency dis-
tribution of root structural traits under drought stress condition. Figure D in S2 File. Q-Q plots
of various model for root functional traits under well-watered and drought stress condition
and for root structural traits under drought stress condition.
(XLSX)
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