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1 
2 
3 Abstract 
4 
5 

Disordered rock-salt compounds are becoming increasingly important due to their potential as 

7 

8 high capacity positive electrode materials for lithium-ion batteries. Thereby, a significant 
9 
10 number  of  studies  have  focused  on  increasing  the  accessible  Li  capacity,  but  studies to 
11 
12 

manipulate the electrochemical potential are limited. This work explores the effect of 
13 
14 

15 transition metal substitution on the electrochemistry of ternary disordered rock-salt-type 
16 
17 compounds with LiM2+

0.5V4+
0.5O2 stoichiometry (M=Mn, Fe, Co). First-principles density 

18 
19 functional theory study is used to predict the impact of the cation substitution on the expected 
20 
21 

average voltage. Moreover, the calculated electronic structures of these materials are used to 

23 

24 analyze the underlying redox processes. Disordered rock-salt Li2VO3 involving a V5+/4+ redox 
25 
26 couple with an average discharge voltage of ~2.2 V has been reported previously. The 
27 
28 

introduced LiM2+
0.5V4+

0.5O2 (M=Mn, Fe, Co), formally depicted as a hypothetical solid- 

30 

31 solution between “Li2VO3-MO”, can be used to rationalize the effect of cation substitution on 
32 
33 their redox potential. The discharge voltages increase in the order of Mn < Fe < Co with 2.28, 
34 
35 

2.41, 2.51 V, exhibiting discharge capacities of 219, 207 and 234 mAh g-1, respectively. 
36 
37 

38 Previous reports on vanadium-based disordered rock-salts show significant capacity fading 
39 
40 during the cycling, and the reasons behind this capacity fading and its solutions have not been 
41 
42 fully investigated. The current study shows that the use of a concentrated LiFSI electrolyte 
43 
44 

improves the cycling stability considerably by reducing the detrimental reactions. Finally, the 

46 

47 presented compounds have been compared with state-of-the-art of vanadium-containing 
48 
49 disordered rock-salt compounds in terms of energy density. 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
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1 
2 
3 1. Introduction 
4 
5 
6 

The  ever-growing  importance  to  increase  the  energy  density  of  lithium-ion  batteries has 

8 
9 impelled widespread research to develop novel high capacity electrode materials. Disputable, 
10 
11 the lack of high capacity positive electrode materials, rather than the negative electrode, is 
12 
13 

limiting the overall energy density.1–3 Therefore, the development of new high-capacity 

15 

16 positive electrode materials, which must offer long cycle life (preferably at low-cost) and at 
17 
18 the same time be environmentally benign and non-toxic is of vital importance.4 Being a good 
19 
20 

lithium-ion conductor is an essential prerequisite for an intercalation host material to enable 

22 

23 fast kinetics and high degree of lithiation/delithiation. As such, it needs percolating lithium 
24 
25 sites spanning the structure, providing favorable and reversible lithium migration throughout 
26 
27 the particles.5 Preserving the structural integrity with minor cation-mixing during charge- 
28 
29 

discharge over a wide compositional range has been considered to be of great importance as 

31 
32 cation-mixing was seen as highly detrimental for lithium-ion transport. This criterion has so 
33 
34 far played a decisive role in the selection of suitable cations, which vary depending on the 
35 
36 

crystal structure.6,7 A widely employed approach by chemists consists of designing new 

38 

39 materials by screening clusters of compounds with attractive structural features, which can 
40 
41 provide framework structures feasible for hosting lithium-ions.8 Consistent with this 
42 
43 

understanding, the most common studied oxide-based positive cathode material are well- 

45 

46 ordered transition metal (TM) oxides like layered LiMO2, spinel-like LiM2O, and Li2M2O4 
47 
48 (lithiated spinel) systems.1,9 On the contrary, cation-disordered rock-salt oxides have a long 
49 
50 time been neglected as potential positive electrode materials. In particular α-LiFeO -type 
51 
52 

structures, with lithium and the transition metal sharing the same site and being randomly 

54 
55 distributed without long-range order have, due to the inherent disorder, been considered as 
56 
57 unsuited. Cation-mixing between Li and transition metal sites can hinder sufficient 
58 
59 

percolation of the Li sites and thus impede the diffusion, leading to poor lithium conductivity 
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1 
2 
3 and consequently to incomplete and irreversible lithium extraction/insertion.10 More recently 
4 
5 

it  has  been  shown  that  disordered  rock-salt  oxides  “can  function  well”  for   lithium-rich 

7 

8 compositions with at least 9% lithium-excess.11  Decreasing the particle size and therefore 
9 
10 shortening the diffusion pathways can also help to improve the accessible capacity.12  As a 
11 
12 

result, cation-disordered rock-salt materials have emerged as potential cathode materials and 
13 
14 

15 started to attract increasing interest.13–15 Several approaches to synthesize these materials have 
16 
17 proven to be effective, in general comprising the introduction of lithium-excess into the host 
18 
19 lattice. The first approach involves the introduction of lithium fluoride into the host lattice by 
20 
21 

a high energy mechanochemical approach.16 In this way, metastable compounds can be 

23 

24 derived, which otherwise cannot be produced by solid-state synthesis. Fluoride anions can 
25 
26 stabilize lower oxidation states and thus lower the average valence state as compared to 
27 
28 

oxides, which then allows for multiple oxidations and consequently higher capacity.17 

30 

31 Another approach, which has been widely adopted for the rational design of cation-disordered 
32 
33 rock-salts, comprises the formation of a solid-solution between stoichiometric cation- 
34 
35 

disordered LiMO2 and high-valent Li-rich compounds (Li2MO3, Li3MO4, Li4MO5).18 

37 

38 However, the small number of presently known stoichiometric cation-disordered rock salt 
39 
40 oxides with α-LiFeO2 crystal structure limits this option. Expanding the library of known 
41 
42 rock-salt oxides would, therefore, be of great importance and may further push the 
43 
44 

development of this material class. First compounds have been identified, which have 

46 

47 interesting electrochemical properties, but there are still open challenges and barriers to 
48 
49 overcome, such as low rate capability, significant voltage slopes, and significant capacity 
50 
51 

fading. 

53 
54 
55 
56 Several factors have been determined to be critical for the cycling performance and 
57 
58 

degradation of the cell. These include, but are not limited to, structural changes and 
59 
60 

impedance build-up related to current collector corrosion, electrolyte decomposition and 
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1 
2 
3 transition metal dissolution.19  Approaches to limit the metal dissolution are the stabilization of 
4 
5 

the structure by transition metal substitution20, surface modifications21,22, use of electrolyte 

7 

8 additives23 and optimized electrolyte formulations.24 Recently, lithium 
9 
10 bis(fluorosulfonyl)imide (LiFSI) has been explored as a promising salt to improve the cycling 
11 
12 

stability and to replace LiPF , as LiFSI is chemically more stable.25–28 However, the amide 
13 
14 

15 does not form stable passivation films, which results in severe anodic dissolution of the Al 
16 
17 current collector for charging beyond 4 V. Yamada et al.29,30 showed that Al dissolution can 
18 
19 be inhibited for highly concentrated LiFSI electrolytes, which then enable the operation at 
20 
21 

>4 V and moreover may alleviate transition metal dissolution due to the high molarity and 

23 

24 higher viscosity. 
25 
26 
27 
28 

Over the past decade, a significant number of studies have focused on enhancing the specific 

30 

31 capacity of disordered rock salt materials; however, studies to fully understand and tune the 
32 
33 electrochemical potential of these materials are very limited. We have recently proposed the 
34 
35 

disordered rock-salt type LiNi0.5V0.5O2, 31 ternary oxide as a potential positive electrode 

37 

38 material for rechargeable lithium-ion batteries. In the present study, we aim to extend the 
39 
40 number of disordered rock-salt type mixed vanadates by LiM+2 V+4 O (M= Fe, Mn, Co). 

0.5 

41 
0.5 2 

42 Here, we attempt to systemically study the effect of metal substitution in the ternary 
43 44 

LiM+2 V+4 O compounds, correlating our experimental findings with the electronic 
45 0.5 0.5 2 

46 

47 structure obtained from first-principles density functional theory (DFT). To the best of our 
48 
49 knowledge, the herein presented oxide materials have not been reported as electrode materials 
50 
51 

before. Furthermore, we report on the impact of concentrated LiFSI electrolyte on the cycling 

53 

54 stability of disordered rock-salt oxide electrodes. 
55 
56 
57 
58 
59 
60 
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1 
2 
3 2. Experimental Section 
4 
5 

6 Synthesis: 
7 
8 LNO-M compounds with a formal stoichiometry of LiM0.5V0.5O2 (M= Mn, Fe, Co) were 
9 
10 

synthesized by high-energy milling of stoichiometric amounts of Li2O, VO2 and MO with 

12 

13 M = Mn, Fe, Co for 20 h using a Fritsch P6 planetary ball mill with 80 mL silicon nitride vial 
14 
15 and silicon nitride balls, with a ball to powder ratio of 20:1. All synthesis steps were carried 
16 
17 

out under inert gas atmosphere (Ar). VO has been synthesized by comproportionation of 1:1 
18 
19 V O and V O .32 MnO, CoO, FeO, Li O were purchased from Alfa Aesar with a purity ≥ 
20 2    3 2    5 2 

21 
22 99.5%. All steps have been taken under an exclusion to air and moisture. 
23 
24 Electrolyte: 
25 
26 

5.5M LiFSI in dimethyl carbonate (DMC). Electrolyte solutions were prepared by mixing the 

28 

29 appropriate quantity of LiFSI (Nippon shokubai) and DMC with battery grade. The obtained 
30 
31 electrolyte is a clear solution. LP30 from BASF (ethylene carbonate/ dimethyl carbonate, 1:1 
32 
33 

weight ratio with 1M LiPF6 was used as an electrolyte. 

35 
36 
37 Materials Characterizations: 
38 
39 Synchrotron X-ray powder diffraction (XRPD) experiments were performed at the Swiss- 
40 
41 

Norwegian Beamline (SNBL), beamline BM01, at the European Synchrotron Radiation 

43 

44 Facility (ESRF). The powdered samples were filled in 0.5mm quartz capillaries and sealed 
45 
46 with wax under an argon atmosphere. XRPD data were collected using a PILATUS 2M area 
47 
48 

detector from DECTRIS, a sample-to-detector distance of 142.27mm, beam size of 0.2 x 0.2 

50 

51 mm, a wavelength of 0.68202Å, a 20° rotation of the capillary and an exposure time of 20s. 
52 
53 The data were converted to conventional one-dimensional powder patterns using the FIT2D 
54 
55 software.33 In-house X-ray powder diffraction data were collected under rotation of the 
56 
57 

capillary on an STOE Stadi P diffractometer with Mo Kα1 (λ = 0.7093Å) using Debye- 

59 
60 



 

6 

22 

29 

45 

52 

Page 7 of 39  
 
 

1 
2 
3 Scherrer geometry. The powder samples were sealed in quartz capillary (0.5mm in diameter) 
4 
5 

under an argon atmosphere. 

7 

8 The scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) 
9 
10 was carried  out  using  the  instrument  LEO  GEMINI 1550  VP equipped with  Silicon Drift 
11 
12 

Detector (OXFORD Instruments). TEM investigations were performed on Tecnai F20ST 
13 
14 

15 transmission electron microscope operated at 200kV. Brunauer-Emmett–Teller (BET) surface 
16 
17 area analyses of the samples were performed with a Micromeritics ASAP 2020 MP system. 
18 
19 
20 
21 

Electrochemical Measurements: 

23 

24 Electrochemical tests were carried out in Swagelok-type cell versus lithium metal as reference 
25 
26 and counter electrode. Electrode slurries were made of 90wt.% composite and 10wt.% 
27 
28 

polyvinylidene difluoride (PVDF) binder with N-methyl-2-pyrrolidone (NMP) as the solvent. 

30 

31 The composite consists of active material and Super C65 carbon black in a weight ratio of 
32 
33 80:20. The mixed slurry was coated on an aluminum foil by doctor blade technique and dried 
34 
35 

at 120°C for 12h under vacuum. Each working electrode (12mm diameter) contained 
36 
37 

38 approximately 3mg of active material, and Li foil was used as a counter electrode. Cyclic 
39 
40 voltammetry (CV) experiments for the cells have been carried out from 1.3 to 4.5V at various 
41 
42 scan rates 0.05-0.5mVs-1 using a Bio-Logic VMP-3 potentiostat at the room temperature. 
43 
44 

Temperature controlled galvanostatic charge-discharge experiments were conducted at 25°C 

46 

47 in climate chambers using an Arbin electrochemical workstation. 
48 
49 Conductivity: To measure the conductivity, the powders of materials were pressed into 
50 
51 

pellets with a diameter of 8 mm and coated with gold on both sides by sputtering. AC 

53 

54 impedance data were collected in the frequency range 0.1 Hz to 1 MHz (amplitude 10 mVrms) 
55 
56 using a frequency response analyzer (ZAHNER-Elektrik GmbH) at various temperatures 
57 
58 

(25°-80 °C). After each temperature, the samples were allowed to equilibrate for a substantial 
59 
60 
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1 
2 
3 amount of time. The impedance data were analyzed using the ZMAN 2 program and fitted 
4 
5 

with an ‘Equivalent Circuit’. 

7 

8 Theoretical calculations: 
9 
10 The periodic density functional theory (DFT) code VASP was applied for an investigation of 
11 
12 

stability and electronic structure of different Li2MVO4 compounds (with M=Mn,Fe,Co). 
13 
14 

15 While the PBE functional was used to account for exchange and correlation, the electron-ion 
16 
17 interaction was described by the projector augmented wave (PAW) method. Moreover, to take 
18 
19 the localization of d-electrons into account, the GGA+U correction was applied for Ni, V and 
20 
21 

(Ni 6.0, V 3.1, following the choice of Urban et al.34 To computationally access the 

23 

24 disordered rocksalt structure of these compounds, the special quasi-random structure approach 
25 
26 was applied for the construction of supercells corresponding to the stoichiometry 
27 
28 

Li16M8Ni8O32. 

30 

31 These supercells were optimized with respect to cell volume and atomic positions. For this 
32 
33 purpose, a 5x5x5 k-point mesh, using the Monkhorst-Pack scheme, was chosen in 
34 
35 

combination with a cutoff energy of 600eV. In the next step, the structures were delithiated 
36 
37 

38 and also optimized, using the same settings. From the total energies of the lithiated and 
39 
40 delithiated structures as well as bulk Li, the corresponding average voltage was then 
41 
42 calculated. 
43 
44 
45 
46 
47 3. Results and Discussion 
48 
49 

50 Structural Characterizations 
51 
52 The quaternary disordered rock-salt vanadates LiM0.5V0.5O2 (M= Fe, Mn, Co) can be prepared 
53 
54 

through a direct one-step mechanochemical approach. Figure 1 shows the X-ray powder 
55 
56 

57 diffraction pattern (XRPD) with the corresponding Rietveld refinement confirming the cation- 

58 
59 disordered rock-salt structure. For a single-phase fit with cubic Fm-3m symmetry, the lattice 
60 

constants were estimated as LiMn0.5V0.5O2: a = 4.1996(8) Å LiFe0.5V0.5O2: a = 4.1460(4) Å 
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1 
2 
3 and LiCo0.5V0.5O2: a = 4.1608 (5) Å. Transmission electron microscopy (TEM) images (see 
4 
5 

Figure  S1  in  the  supplementary)  show  the  typical  morphology35   for mechanochemically 

7 

8 synthesized compounds with irregular shaped, agglomerated secondary particles consisting of 
9 
10 20-100 nm-sized crystallites. The elemental mappings of LiM0.5V0.5O2 (M= Fe, Mn, Co) and 
11 
12 

the scanning electron microscopy images are presented in Figure S2-S4, respectively. 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

44 Figure 1: X-ray diffraction patterns with the corresponding fit obtained by Rietveld 
45 
46 refinement for a) LiCo0.5V0.5O2, b) LiFe0.5V0.5O2 and c) LiMn0.5V0.5O2. d) shows a schematic 
47 
48 

crystal structure14 of LiM0.5V0.5O2 with cubic unit cell and cations randomly occupying the 

50 

51 octahedral sites. 
52 
53 
54 
55 

Density functional theory calculations 
56 
57 

58 Density functional theory (DFT) calculations with the periodic DFT code VASP36 were 
59 
60 conducted to elaborate the differences in stability and electronic structure of the 
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1 
2 
3 experimentally  investigated  LiM0.5V0.5O4  compounds  (with  M  =  Mn,  Fe,  Co).  In  our 
4 
5 

calculations, the PBE functional37  was used to account for exchange and correlation, while the 

7 

8 electron-ion interaction was described by the projector augmented wave (PAW) method.38  To 
9 
10 account for the localization of d-electrons that is typically evidenced in transition metal oxides, 
11 
12 

the Hubbard-like U correction was considered for V, Mn, Fe and Co (V 3.1 eV, Mn 3.9 eV, 
13 
14 

15 Co 3.4 eV, Fe 4.0 eV ), following references.10,39 

16 
17 For electronic structure calculations, the disorder is still a difficult task to cope with. In this 
18 
19 work, we use the so-called special quasi-random structure (SQS) approach39 to treat the 
20 
21 

disorder in the DRS structures of the investigated compounds. For this purpose, we have 

23 

24 constructed 2x2x2 supercells of LiM0.5V0.5O2 stoichiometry and then were fully optimized 
25 
26 with respect to both volume and atomic positions. For the structural optimization, a 5 × 5 × 5 
27 
28 

k-point mesh and an energy cutoff of 600 eV were selected. Delithiated structures were 

30 

31 constructed by complete removal of Li and subsequently optimized with the previously 
32 
33 described settings. The total energies of lithiated and delithiated LixM0.5V0.5O2 (with x=0 or 
34 
35 

x=1), in combination with that one of bulk Li, were then used to calculate the average 
36 
37 

38 voltages of these cathode materials. The calculations indeed reproduce the experimentally 
39 
40 observed trends and show a decreasing voltage from Co to Mn (Co 3.18 V, Fe 3.10 V, Mn 
41 
42 2.98 V). For an investigation of the redox activity in these materials, the electronic density of 
43 44 

states (DOS) for the fully lithiated structures (LiM V O stoichiometry) were calculated. 
45 0.5 0.5 2 

46 

47 The partial DOS for transition metal d-electrons and oxygen p-electrons were extracted and 
48 
49 are plotted in Figure 2. As previously evidenced for Ni-based quaternary oxides31, we also 
50 
51 

find a strong contribution of the oxygen p-states close to the Fermi level. However, in contrast 

53 

54 to the Ni-based oxides, the here investigated LixM0.5V0.5O2 compounds show a strong 
55 
56 hybridization of the oxygen p- with the V d-orbitals, which means that less anionic redox and, 
57 
58 

hence, smaller tendencies for oxygen release can be expected under delithiation. Interestingly, 
59 
60 

the d-states of the additional transition metals (Mn, Fe, Co) also show contributions directly 
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1 
2 
3 below the Fermi level. In fact, the Fe d-states even show a strong peak at the same energy 
4 
5 

than the V d-states, such that under delithiation Fe and V may be oxidized at the same time. In 

7 

8 case of the Co and Mn compounds, the V d-states are dominant directly below EF, thus 
9 
10 indicating that V will be oxidized first. Nevertheless, there are already small contributions of 
11 
12 

the Mn d-states visible below E and, notably, a large Co peak only slightly below the V peak 
13 
14 

15 is also clearly present. Taking a closer look at the pDOS between -2 eV and EF, we recognize 
16 
17 that for the Fe and the Mn-containing compounds there is essentially a full hybridization of 
18 
19 oxygen p and TM d-states, meaning that no significant anionic redox is expected. In the case 
20 
21 

of Co, there are some excess oxygen p-states which may contribute to anionic redox. 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

Figure 2: Partial density of states (oxygen p- and metal d-states) for a) LiMn0.5V0.5O2 b) 
58 LiFe0.5V0.5O2 c) LiCo0.5V0.5O2 d) LiNi V O * obtained from DFT. * Reproduced with 

0.5 
59 

0.5 2 

60 permission.31 Copyright (2011) American Chemical Society. 
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1 
2 
3 Electrochemical Properties 
4 
5 

Stacked charge-discharge profiles of LiM0.5V0.5O2 (M= Mn, Fe, Co, Ni) cycled between 4.5 – 

7 

8 1.3 V at 20 mA g-1 with the corresponding differential capacity plots are shown in Figure 3. 
9 
10 The previously studied LiNi0.5V0.5O2 has been included for comparison. Theoretical capacities 
11 
12 

based on 1e- transfer are 292, 290, 286 mAh g-1 for LiM0.5V0.5O2 (M= Mn, Fe, Co), 

14 

15 respectively. As expected from our DFT calculations, the average discharge voltages increase 
16 
17 in the order of Mn < Fe < Co < Ni with values of 2.28, 2.41, 2.51, 2.55 V, respectively. The 
18 
19 differential capacity plots of LiMn0.5V0.5O2 and LiFe0.5V0.5O2 display broad peaks with the 
20 
21 

maxima centered at 2.0 and 2.4 V for the discharge and 2.6 and 2.8 V for the charge. In 

23 

24 contrast, LiCo0.5V0.5O2 displays very broad peaks with no clear maxima during discharge, but 
25 
26 two peaks were observed for the charge at 2.9 and 4.2 V. These observations are also reflected 
27 
28 

in the charge-discharge profiles. LiMn0.5V0.5O2 and LiFe0.5V0.5O2 are showing a more plateau- 

30 

31 like behavior, whereas LiCo0.5V0.5O2 shows a more sloping voltage profile. XANES 
32 
33 measurement in our previous study revealed that 0.5 out of 0.94 Li, which could be extracted 
34 
35 

from LiNi0.5V0.5O2 correspond to V+4/+5 redox. All presented compounds show lithium 

37 

38 insertion/extraction capabilities beyond 0.5 Li per formula unit, which implies both transition 
39 
40 metals to be redox-active. 
41 
42 LiNi0.5V0.5O2 is in sharp contrast to other compounds as it displays a characteristic voltage 
43 
44 

plateau at 4.2V during charge, which has been ascribed to oxygen activity in the literature.40 

46 

47 This observation is supported by our DFT results showing a strong contribution of the oxygen 
48 
49 p-states close to the Fermi level and lower hybridization with the d-states of the transition 
50 
51 

metal. LiCo0.5V0.5O2 showed a small redox contribution around 4.2 V during charge, as 

53 

54 indicated by the differential capacity plot in Figure 3. This again is in agreement with the 
55 
56 excess oxygen p-states observed in our DFT calculations. In LiNi0.5V0.5O2 cathode material, 
57 
58 

the higher voltage hysteresis of Ni3+/2+ systems has been associated with narrower bandgap 
59 
60 

and structural modification due to the Jahn-Teller distortion, which can trigger oxygen loss 
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1 
2 
3 and cation migration leading to a higher voltage hysteresis.41  Similar to LiNi0.5V0.5O2 cathode, 
4 
5 

LiMn0.5V0.5O2 cathode also shows comparatively higher voltage hysteresis, which might be 

7 

8 due to the Jahn-Teller (JT) distortion (d4 and d7 electron configuration) upon oxidation.42,43 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Figure 3: Charge-discharge voltage profile with respective differential capacity plot during 
51 the first cycle for a) LiMn0.5V0.5O2 b) LiFe0.5V0.5O2 and c) LiCo0.5V0.5O2 d) LiNi V O *.* 

52 
53 Adapted with permission.31 Copyright (2011) American Chemical Society. 
54 
55 
56 
57 
58 
59 
60 

0.5 0.5 2 
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1 
2 
3 LiM0.5V0.5O2 (M = Mn, Co) with disordered rock-salt structure 
4 
5 

In the remaining sections, we mainly discuss the electrochemical results of LiMn0.5V0.5O2 and 

7 

8 LiCo0.5V0.5O2 compounds only. LiFe0.5V0.5O2 will not be further discussed at this point. The 
9 
10 influence of the specific current and the cycling window on the cycling stability, specific 
11 
12 

capacity, and voltage hysteresis was examined. Figure 4a,b shows the cycling stability and 
13 
14 

15 discharge capacity of LiMn0.5V0.5O2 and LiCo0.5V0.5O2 cycled between 4.5-1.3 V at different 
16 
17 specific currents. Similarly, both compounds show strong capacity decay upon cycling. Note 
18 
19 that LiCo0.5V0.5O2 exhibits higher specific discharge capacities compared to LiMn0.5V0.5O2, 
20 
21 

but also shows extensive capacity fading. The cycling stability appears to depend on the 

23 

24 applied specific current. For faster cycling with higher specific current, the capacity retention 
25 
26 increases significantly. After 75 cycles the capacity retention was 37 % exhibiting a specific 
27 
28 

capacity of 85 mAh g-1 at 20 mA g-1 and 56 % with 115 mAh g-1 at 200 mA g-1 for 

30 

31 LiCo0.5V0.5O2. Similar observations were made for LiMn0.5V0.5O2, which showed capacity 
32 
33 retention of 39 % with 79 mAh g-1 and 57% with 73 mAh g-1, respectively. Figure 4c,d shows 
34 
35 

the rate performance for both compounds, which involved three consecutive cycles at a 
36 
37 

38 specific current. For the applied specific currents of 20, 50, 100, 200, 400 mA g-1, 
39 
40 LiMn0.5V0.5O2 exhibited a specific capacity of 219, 161, 128, 93, 53 mAh g-1, respectively and 
41 
42 LiCo0.5V0.5O2 exhibited 234, 192, 154, 116, 78 mAh g-1, respectively .The corresponding first 
43 44 

charge-discharge profile of each current step is illustrated in Figure 4e,f for LiMn V O 
45 
46 

47 and LiCo0.5V0.5O2, respectively. 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
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Figure 4: Cycling stability in the voltage window between 4.5-1.3 V for different currents for 

56 a) LiMn0.5V0.5O2 and b) LiCo0.5V0.5O2. Rate capability test with 3 consecutive cycles at a 

58 given current in the range of 4.5-1.3 V for c) LiMn0.5V0.5O2 and d) LiCo0.5V0.5O2. First cycle 
59 

60 voltage profile for each current of the rate capability test for e) LiMn0.5V0.5O2 and f) 

LiCo0.5V0.5O2. 
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1 
2 
3 
4 
5 

The influence of the cut-off voltage on the cycling stability and the voltage hysteresis have 

7 

8 been examined for a constant current measurement with 50 mA g-1. The cycling stability is 
9 
10 shown in Figure 5a,b and the respective charge-discharge profiles for LiMn0.5V0.5O2 and 
11 
12 

LiCo0.5V0.5O2 are depicted in Figure 5c,d. When cycling is limited between 2.0 ≤ x ≤ 4.0 V, 

14 

15 the cycling stability increases significantly in both cases. Capacity fading is more severe for a 
16 
17 wide cycling window between 4.5-1.3 V. A comparably narrow cycling window, on the other 
18 
19 hand, results in a reduced specific capacity. For cycling in the voltage window between 4.0- 
20 
21 

2.0 V the cells exhibited a specific capacity of 152 mAh g-1 and 100 mAh g-1, whereas the 

23 

24 wide cycling window exhibited a specific capacity of 210 mAh g-1 and 171 mAh g-1 for 
25 
26 LiCo0.5V0.5O2 and LiMn0.5V0.5O2, respectively. A striking fact is that hysteresis is lower for 
27 
28 

LiCo0.5V0.5O2 when compared to LiMn0.5V0.5O2. For a wider cycling window with 2.0 ≥ x 

30 

31 ≥4.0 V, with deeper discharge and/or higher charge cut-off, an apparent increase in voltage 
32 
33 hysteresis can be observed for both compounds towards the end of discharge/charge. This 
34 
35 

suggests possibly slower kinetics due to bulk diffusion limitations in this region.44 
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56 
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60 
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30 
31 
32 
33 
34 
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41 
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50 
51 
52 
53 Figure 5: Cycling stability for various cut-off voltages at 50 mA g-1 for a) LiMn0.5V0.5O2 and 
54 
55 

b) LiCo0.5V0.5O2. Respective first cycle charge-discharge voltage profile with various cut-off 

57 

58 voltages for c) LiMn0.5V0.5O2 and d) LiCo0.5V0.5O2. 
59 
60 
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1 
2 
3 Conductivity study 
4 
5 

The  charge-discharge  profiles  show  a  large  voltage  hysteresis  with  larger  polarization 

7 

8 overpotentials implying kinetic limitations. In fact, the electrode kinetic is determined by 
9 
10 electronic and ionic conductivity, which both can limit the rate performance.45  At first, the 
11 
12 

electronic conductivity and in the later part, the apparent lithium diffusion coefficient were 
13 
14 

15 determined. The electronic conductivity of LiCo0.5V0.5O2 and LiMn0.5V0.5O2 has been 
16 
17 measured by alternating current (AC) impedance spectroscopy at various temperatures (25- 
18 
19 80 °C). The impedance data and the corresponding equivalent electrical circuits that describes 
20 
21 

the impedance behavior of the electrodes are depicted in Figure 6a, b. Constant phase 

23 

24 elements (CPEs) and resistors are denoted by the symbols ‘Q’ and ‘R’ in the equivalent 
25 
26 circuits. The capacitance (C) can be described as a function of ‘Q’ and ‘n’ and is obtained by 
27 
28 

fitting the relation C = (R1-nQ)1/n, where ‘n’ is essentially a measure for the degree of 

30 

31 depression of an arc. The fitting of the equivalent electrical circuit yields capacitance values 
32 
33 of ∼10−10 F for both samples, thus confirming that the observed impedance responses 
34 
35 

originate mainly from the bulk (grains) of the samples. The lack of any additional polarization 

37 

38 process at low frequencies shows that the conduction in these samples is mainly due to 
39 
40 electronic carriers, and this observation is again confirmed by DC polarization studies. The 
41 
42 activation  energy   (Ea)   for  LiCo0.5V0.5O2  and  LiMn0.5V0.5O2  was  determined   using   the 

44 
Arrhenius equation evaluating the slope of log (σ) vs. T−1, as shown in Figure 6c, d. Here ‘σ’ 

46 

47 is the total conductivity, and ‘T’ is the absolute temperature. Both LiCo0.5V0.5O2 and 
48 
49 LiMn0.5V0.5O2 showed a comparable room temperature conductivity of ~ 4.1 × 10-6 S cm-1 as 
50 
51 

and ~ 3.5 × 10-6 S cm-1, respectively. The activation energy of LiCo0.5V0.5O2 was determined to 

53 

54 be 224(± 13) meV, while for LiMn0.5V0.5O2 a value of 252(±6) meV. Even though the pristine 
55 
56 samples show reasonably high electronic conductivity, it is noteworthy that, with respect to 
57 
58 

the state of charge and cycling, the conductivity is expected to change. 

60 
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18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 Figure 6: Nyquist plots of the impedances at different temperatures (25-80 °C) for 
41 
42 

a) LiCo0.5V0.5O2 and b) LiMn0.5V0.5O2. Arrhenius plots of the activation energy for 

44 

45 c) LiCo0.5V0.5O2 and d) LNO-Mn. 

46 
47 
48 
49 The apparent lithium diffusion coefficients for LiCo0.5V0.5O2 and LiMn0.5V0.5O2 have been 
50 
51 

determined by cyclic voltammetry (CV) experiments using the Randles-Sevcik equation.46 

53 

54 The CV at various scan rates from 0.05 to 0.5 mV s-1 curves of both LiCo0.5V0.5O2 and 
55 
56 LiMn0.5V0.5O2 (Figure 7 a, b) illustrate an increase in the peak current and a separation in the 
57 
58 

oxidation/reduction peaks with respect to the increasing scan rates. Oxidation/reduction peak 

60 
currents (Ip) of LiCo0.5V0.5O2 and LiMn0.5V0.5O2 are proportional to the square root of the scan 
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1 
2 
3 rate (ν) as shown in Figure 7a,b and Figure S8 (supporting information), which shows a 
4 
5 

semi-infinite linear diffusion behavior, indicating that the current for this range is controlled 

7 

8 by  bulk  diffusion  processes  rather  than  surface  contributions.47   The  apparent lithium-ion 
9 
10 diffusion coefficients for LiMn0.5V0.5O2 and LiCo0.5V0.5O2 obtained from CV is ∼ 2.7 × 10-16 

11 
12 

cm2 s−1 and 1.2 × 10-15 cm2 s−1, respectively. 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

35 Figure 7: Cyclic voltammograms for a) LiCo0.5V0.5O2 and b) LiMn0.5V0.5O2 at various voltage 
36 
37 scan rates. 
38 
39 
40 
41 

Reaction mechanism 

43 

44 Structural changes of the positive electrode materials were studied by XRPD measurements of 
45 
46 LiMn0.5V0.5O2 and LiCo0.5V0.5O2 were carried out for different states of charge. The XRPD 
47 
48 

data with the corresponding Rietveld refinement fit for the charged state (at 4.5 V) and 

50 

51 discharged state (at 1.5 V) after charging to 4.5 V are shown in Figure 8a-d. The 
52 
53 corresponding lattice constants are shown in Table S1. After charging, the lattice constant 
54 
55 

decreased due to the lattice contraction resulting from Li removal. This can also be associated 
56 
57 

58 with the V+4/+5 [V+4 (r = 0.58 Å) and V+5 (r = 0.46 Å )]48 redox reaction, which has been 
59 
60 shown to be the dominant redox process for LiNi0.5V0.5O2. Furthermore, the Mn+2/+3 redox 
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1 
2 
3 couple [with Mn+2 (r = 0.69 Å) and Mn+3 (r = 0.56 Å)]48 for LiMn0.5V0.5O2 and Co+2/+3redox 
4 
5 

couple [with Co+2 (r = 0.65 Å) and Co+3 (r = 0.61 Å)]48 for LiCo0.5V0.5O2 can contribute  to the 

7 

8 charge compensation and volume decrease as also suggested by our DFT results. In general, 
9 
10 the changes in the lattice parameter are small. The cubic structure is preserved and can be 
11 
12 

indexed accordingly. However, the diffraction pattern of the charged materials show a large 
13 
14 

15 change in the intensity distribution of the prominent Bragg reflections of the cubic rock salt 
16 
17 type structure, i.e., the intensity of the 111 reflections strongly decreases, and the intensity 
18 
19 ratio I220/I200 deviates from the pristine state. We conclude that, due to transition metal 
20 
21 

migration from octahedral to tetrahedral sites (4a to 8c Wyckoff position), a certain structural 

23 

24 rearrangement takes place upon delithiation. From the Rietveld refinement, this site migration 
25 
26 can be estimated to be in the order of approximately 5%. However, in order to unambiguously 
27 
28 

prove this mechanism, neutron diffraction studies would be required. It is interesting to note 

30 

31 that after the first charge, intensity loss with an increase in the background was observed, 
32 
33 without complete recovery after discharge. Similar observations have been made for other 
34 
35 

disordered rock-salt oxides, which have been associated with the partially reversible structural 
36 
37 

38 reorganization.49,50 
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1 
2 
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4 
5 
6 
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8 
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10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 Figure 8: Ex-Situ XRPD for different states of charge with charging to 4.5 V and 
39 
40 subsequently discharging to 1.5 V for a) LiMn0.5V0.5O2 charged b) LiMn0.5V0.5O2 discharged 
41 c) LiCo V O charged d) LiCo V O discharged. The gaps in the diffraction pattern are 
42 0.5 0.5 2 0.5 0.5 2 

43 due to the gaps in the Pilatus 300K-W detector. 
44 
45 
46 
47 Metal dissolution 
48 
49 

Capacity fading may originate partly due to electrolyte side reactions51 or charged state 

51 
52 instabilities of the material.52 Therefore, to track down eventual metal dissolution extensively 
53 
54 cycled electrodes have been disassembled, and elemental maps were collected from the 
55 
56 

lithium metal surface as shown in Figure S5, S6. The elemental maps reveal transition metal 

58 

59 deposition on the lithium anode. LiMn0.5V0.5O2  and LiCo0.5V0.5O2 for the pristine and 
60 
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1 
2 
3 chemically delithiated state were immersed in electrolyte for 7 days at 45°C to and quantified 
4 
5 

by inductively coupled plasma optical emission spectroscopy (ICP-OES) as shown in Table 1. 

7 

8 From  Table  1  and  the  calculated  dissolution  ratios,  it  is  evident  that  the  dissolution  is 
9 
10 significantly  increased  in  the  charged  state.  For  high  delithiation  degrees,  significant 
11 
12 

dissolution of the different TMs was observed. Similar observations have previously been 
13 
14 

15 made for other vanadium-based cathode materials, which have been synthesized in a similar 
16 
17 way and for which vanadium dissolution has also been evidenced.13,31,53. The capacity fading 
18 
19 in both compounds, resulting from the loss of active material, is significantly smaller than the 
20 
21 

overall capacity fading. This finding suggests that the capacity fading is not only influenced 

23 

24 by the active material loss. We, therefore, argue that additional electrolyte side reactions 
25 
26 could be responsible for capacity fading. 
27 
28 
29 
30 

31 Table 1: Fraction of the transition metal dissolving in the electrolyte at elevated temperatures 
32 
33 (T=45°C) for pristine and charged state 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

53 Impact of the electrolyte salt on the cycling stability 
54 
55 The presented compounds show low cycling stability, which can only partly be ascribed to 
56 
57 

transition metal migration and dissolution, as indicated above. A further critical element 

59 

60 affecting cycling behavior is the electrolyte. The interactions between components of the 

 
 

Compound 

 
 

Element 

Dissolution (ppm)  
 

Ratio Charged state Pristine state 

LiMn0.5V0.5O2 V 4939±54 261±8 18.9 

Mn 5041±56 242±7 20.8 

LiCo0.5V0.5O2 V 3612±40 205±6 17.6 

Co 5942±66 537±16 11.1 
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1 
2 
3 electrolyte and the positive or and negative electrode can lead to significant side reactions, 
4 
5 

which  in  turn  lead  to  capacity  fading.  The  use  of  additives54,55   and/or  changes  in  the 

7 

8 electrolyte formulation by replacing the lithium salts have been shown to be useful measures 
9 
10 to alleviate the capacity fading. 
11 
12 

In order to study the influence on the cycling performance, we compared two electrolytes with 
13 
14 

15 different lithium salts. We tested the reported30 5.5 M lithium bis(fluorosulfonyl) imide 
16 
17 (LiFSI) in dimethyl carbonate as an electrolyte to improve the cycling stability of the cathode 
18 
19 materials and compared it to a conventional 1.0 M LiPF6 in ethylene carbonate dimethyl 
20 
21 

carbonate (1:1 w/w) electrolyte. The influence of the different electrolytes on the cycling 

23 

24 stability has been studied at a specific current of 200 mA g-1 in the cycling window between 
25 
26 4.5-1.3 V, as shown in Figure 9. The cells cycled with LiPF6 electrolyte for 100 cycles 
27 
28 

exhibit a capacity of 108 mAh g-1 for LiCo0.5V0.5O2, corresponding to 53 % of the initial 

30 

31 capacity and 65 mAh g-1 for LiMn0.5V0.5O2 which amounts to 51 % of the initial value. 
32 
33 However, the LiFSI containing electrolyte was found to increase cycling stability 
34 
35 

considerably. After 100 cycles, the cells exhibited a specific discharge capacity of 140 mAh g- 

36 
37 

38 
1 and 98 mAh g-1 corresponding to 68% and 72% of the initial capacity for LiCo0.5V0.5O2 and 

39 
40 LiMn0.5V0.5O2. The reasons why LiFSI electrolyte salt improves cycling performance are not 
41 
42 yet clear.56 An advantage of excluding LiPF6 is to minimize the electrode degradation, caused 
43 
44 

by the formation of HF, which has been found to enhance metal dissolution. The higher 

46 

47 stability of LiFSI towards hydrolysis as compared to LiPF6(organic carbonate solvents) in 
48 
49 conjunction with lower interfacial resistances, were regarded as the cause for the higher 
50 
51 

cycling stability.57 Highly concentrated electrolytes bring some interesting benefits like lower 

53 

54 solubility of other species such as transition metals, which possibly can be attributed to lower 
55 
56 proportion or/and absence of free solvent molecules for the coordination of cations. Other 
57 
58 

advantages are the widened electrochemical stability and the mitigation of lithium dendrite 
59 
60 
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1 
2 
3 growth. The disadvantage are the observed higher viscosity, electrode wetting issues, and the 
4 
5 

higher cost.58 
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43 

44 Figure 9: Cycling stability with two different electrolytes in the voltage window of 4.5-1.3 V 
45 
46 for different currents for a) LiMn0.5V0.5O2 and b) LiCo0.5V0.5O2. Corresponding voltage 
47 
48 

profiles for the initial cycles c) LiMn0.5V0.5O2 and d) LiCo0.5V0.5O2. 

50 
51 
52 
53 Comparison of vanadium-based disordered rock-salts as positive electrode material 
54 
55 Finally, to evaluate the performances of the presented materials with respect to other 
56 
57 

vanadium-based cation-disordered rock-salt oxides the respective capacities and energy 

59 

60 densities have been compared in Figure 10. Most compounds show an average discharge 
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1 
2 
3 voltage of about 2.50.3 V, the exact value being influenced by the oxidation state and the 
4 
5 

second TM. However, as expected, Li-rich compositions tend to exhibit higher capacities and 

7 
8 higher energy densities compared to the stoichiometric compounds. 
9 
10 The approaches to introduce lithium-excess can, in general, be divided into the modification 
11 
12 

of the cation and/or the anion sublattice. The first approach relies on higher-valent, 

14 

15 electrochemically inactive charge compensators with mostly d0-elements such as Nb+5, Ti+4
 

16 
17 and possibly Mo+6 and, interestingly, also with d1-elements such as V+4, which can offer 
18 
19 

additional transition metal redox capacity. Important to note, V+4 based disordered rock-salt 

21 

22 compounds are only accessible by mechanochemical synthesis or are formed during 
23 
24 cycling.31,59 The second approach relies on the fluorination of the anion-sublattice and can 
25 
26 stabilize lower oxidation states as it has been demonstrated for Li2M+4O3/Li2M+3O2F (M= 

28 
Mn,V).60–62  Moreover, both concepts can  be combined to design optimal compositions with 

30 
31 high energy density. 
32 
33 Both Li2VO2F and Li2Cr0.2V0.8O2F display a specific capacity between 360-420 mAh g-1 

34 
35 

delivering energy densities between 900-1200 Wh kg-1 for the initial cycles indicating the 

37 

38 advantage of multiple redox centers with M+3/+5 oxidation state. Furthermore, the combination 
39 
40 with high voltage M+2/+4 couples can provide a more significant fraction of the capacity 
41 
42 

coming at higher voltage, thereby increasing the average discharge voltage as shown for 

44 

45 Li1.23Mn0.255V0.515O0.18F0.2 and Li1.2Mn0.2V0.6O2. Interesting is that the LiMn0.5V0.5O2 
46 
47 presented here shows a lower average voltage as compared to the Li-rich compositions. This 
48 
49 can partly be attributed to the lower oxidation state in the fluorinated compounds. 
50 51 

LiNi V O and LiCo V O are crossing the 600 Wh kg-1 and promise higher energy 
52 0.5 

53 

0.5 2 0.5 0.5 2 

54 density for Li-rich compositions. Fluorine substitution is the most promising approach as it 
55 
56 allows the combination of low-value transition metal with excess lithium and thus reduces oxygen 
57 
58 

redox and/or oxygen loss, which adversely affects cell performance. The latter requires the 

60 
oxidation to higher oxidations states, e.g., M+3/+4, which tend to be unstable and often are 
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1 
2 
3 accompanied  by  oxygen  redox  and  oxygen  loss  leading  to  surface  degradation.  The 
4 
5 

combination of both approaches can alleviate this effect as the fraction of the transition metal 

7 

8 redox could be increased.63 

9 
10 Starting from the here presented stoichiometric LiM0.5V0.5O2 disordered rock-salt compounds, 
11 
12 

lithium-excess could be either introduced by basically changing towards vanadium-rich 
13 
14 

15 composition with Li1+2xM0.5-2xV0.5+xO2. Furthermore, lithium-excess can be introduced 
16 
17 through fluorination by introducing LiF with high energy milling or by forming solid- 
18 
19 solutions by higher-valent elements. This can open the path for the design of optimized 
20 
21 

compositions, which can exhibit higher capacity and increased energy density. 
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41 
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1 
2 
3 Figure 10: Reported first discharge average voltage and specific capacity values for various 
4 
5 vanadium-based13,31,50,59,64–67   stoichiometric  and  Li-rich  cation  disordered  rock-salt oxides. 

6 The dashed lines (---) correspond to isoenergetic lines for specific energy densities (Wh kg-1). 
8 

Footnotes show the cycling range (a) 4.8-1.5 V (b) 4.1-1.3 V (c) 4.7-1.3 V (d) 3.5-1.0 V (e) 
9 
10 4.6-1.5 V (f) 4.0-1.0 V (g) 4.4-1.0 V (h) 4.5-1.3 V. # becomes Li-rich after first discharge. 
11 
12 
13 
14 

Summary & Conclusion 

16 
17 We have introduced a set of new ternary disordered rock-salt-type compounds with the 
18 
19 general formula LiM0.5V0.5O2 (M=Fe, Mn, Co) as potential positive electrode materials in 
20 
21 

LiBs. The phases contain V+4 and M+2 redox centers, with the average oxidation state being 

23 

24 +3. We demonstrate that the electrochemical properties can effectively be tuned by 
25 
26 substituting different transition metals in the host lattice. The reported average discharge 
27 
28 

voltage of the disordered rock-salt Li2VO3 (Li1.333V0.666O2) with a V5+/4+ redox couple is 2.20 

30 

31 V.17 The ternary rock-salt LiM0.5V0.5O2 (M = Fe, Mn, Co), which can be thought as a 
32 
33 hypothetical solid-solution between “Li2VO3-MO” show higher average voltages as compared 
34 
35 

to Li VO , which increase in the order Mn < Fe < Co with 2.28, 2.41, 2.51 V, demonstrating 
36 
37 

38 the beneficial effect of the cation substitution on the electrochemical properties. 
39 
40 LiMn0.5V0.5O2 and LiCo0.5V0.5O2 cycled between 4.5-1.3 V exhibit a specific discharge 
41 
42 capacity of 219 and 234 mAh g-1 at 20 mA g-1, respectively. The capacity retention increases 
43 
44 

progressively by reducing the voltage window but comes at the cost of lower specific capacity. 

46 

47 The low apparent diffusion coefficients of LiCo0.5V0.5O2 and LiMn0.5V0.5O2 necessitate the use 
48 
49 of nanoscale materials in order to achieve high delithiation degrees with acceptable rate 
50 
51 

capability. We, therefore, argue that mechanochemical synthesis can be beneficial as it is an 

53 

54 advantageous alternative to traditional nanomaterial preparation. The small changes in the 
55 
56 lattice constant during lithiation/delithiation could be associated with a structural distortion 
57 
58 

and possibly due to transition metal migration from octahedral to face-shared tetrahedral sites 
59 
60 

during the charging process. This may deteriorate the diffusion kinetics and inhibit lithium 
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1 
2 
3 insertion/extraction   as   an   additional   source  of   performance   degradation. Furthermore, 
4 
5 

performance deterioration could partly be attributed to metal dissolution and migration from 

7 

8 the positive electrode and deposition on the lithium electrode. A dissolution study revealed 
9 
10 that dissolution of the active material increases by at least one order of magnitude for the 
11 
12 

charged state; however, the resulting active material loss cannot account for the significant 
13 
14 

15 capacity loss. We, therefore, conclude that electrode/electrolyte side reactions and cation 
16 
17 migration are predominant for the capacity loss. This is supported by the fact that switching 
18 
19 from 1.0 M LiPF6 (EC:DMC 1:1 w/w) electrolyte to a concentrated 5.5 M lithium 
20 
21 

bis(fluorosulfonyl) imide (LiFSI) in DMC as electrolyte increased the capacity retention by a 

23 

24 factor of 1.4 and 1.8 at the end of 400 cycles for LiCo0.5V0.5O2 and LiMn0.5V0.5O2, 
25 
26 respectively. The compounds presented here could be evaluated as a set of basis cathode 
27 
28 

materials and enabling us for further tuning and optimizations in the direction of lithium- 

30 

31 excess compositions. This could be realized by either changing towards vanadium-rich 
32 
33 compositions with Li1+2xM0.5-2xV0.5+xO2 or/and fluorination to Li2(M,V)O2F oxyfluoride. 
34 
35 
36 
37 
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