214 research outputs found

    Swept-Wing Ice Accretion Characterization and Aerodynamics

    Get PDF
    NASA, FAA, ONERA, the University of Illinois and Boeing have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large-scale, three-dimensional swept wings. The overall goal is to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formation and resulting aerodynamic effect. A seven-phase research effort has been designed that incorporates ice-accretion and aerodynamic experiments and computational simulations. As the baseline, full-scale, swept-wing-reference geometry, this research will utilize the 65% scale Common Research Model configuration. Ice-accretion testing will be conducted in the NASA Icing Research Tunnel for three hybrid swept-wing models representing the 20%, 64% and 83% semispan stations of the baseline-reference wing. Three-dimensional measurement techniques are being developed and validated to document the experimental ice-accretion geometries. Artificial ice shapes of varying geometric fidelity will be developed for aerodynamic testing over a large Reynolds number range in the ONERA F1 pressurized wind tunnel and in a smaller-scale atmospheric wind tunnel. Concurrent research will be conducted to explore and further develop the use of computational simulation tools for ice accretion and aerodynamics on swept wings. The combined results of this research effort will result in an improved understanding of the ice formation and aerodynamic effects on swept wings. The purpose of this paper is to describe this research effort in more detail and report on the current results and status to date.

    Dynamics and statistics of heavy particles in turbulent flows

    Get PDF
    We present the results of Direct Numerical Simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Taylor's Reynolds number is around 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical evolution. We discuss both the transient and the stationary regimes. In the transient regime, we study the growt of inhomogeneities in the particle spatial distribution driven by the preferential concentration out of intense vortex filaments. In the stationary regime, we study the acceleration fluctuations as a function of the Stokes number in the range [0.16:3.3]. We also compare our results with those of pure fluid tracers (St=0) and we find a critical behavior of inertia for small Stokes values. Starting from the pure monodisperse statistics we also characterize polydisperse suspensions with a given mean Stokes.Comment: 13 pages, 10 figures, 2 table

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Uncertainty quantification for characterization of high enthalpy facilities

    No full text
    The postflight analysis of a space mission requires accurate determination of the free-stream conditions for the trajectory. The Mach number, temperature, and pressure conditions can be rebuilt from the heat flux and pressure measured on the spacecraft by means of a Flush Air Data System (FADS). This instrumentation comprises a set of sensors flush mounted in the thermal protection system to measure the static pressure (pressure taps) and heat flux (calorimeters). Knowing that experimental data suffer from errors, this methodology needs to integrate quantification of uncertainties. Epistemic uncertainties on the models for chemistry in the bulk and at the wall (surface catalysis) should also be taken into account. To study this problem it is necessary to solve a stochastic backward problem. This paper focuses on a preliminary sensitivity analysis of the forward problem to understand which uncertainties need to be accounted for. In section 2, the uncertainty quantification methodologies used in this work are presented. Section 3 is dedicated to the one-dimensional (1D) simulations of the shock layer to identify which chemical reactions of the mechanism need to be accounted for in the Uncertainty Quantification (UQ). After this triage procedure, the two-dimensional (2D) axisymmetric flow around the blunt nose was simulated for two trajectory points of EXPERT (EXPErimental Reentry Test-bed) is simulated and the propagation of the uncertainties on the stagnation pressure and heat flux has been studied. To do this study, the open source software DAKOTA from Sandia National Laboratory [1] is coupled with two in-house codes: SHOCKING that simulates the evolution of the chemical relaxation in the shock layer [2], and COSMIC that simulates axisymmetric chemically reacting flows [3]

    A KB/DSS for financial planning

    No full text
    corecore