198 research outputs found

    Opportunities for organoids as new models of aging.

    Get PDF
    The biology of aging is challenging to study, particularly in humans. As a result, model organisms are used to approximate the physiological context of aging in humans. However, the best model organisms remain expensive and time-consuming to use. More importantly, they may not reflect directly on the process of aging in people. Human cell culture provides an alternative, but many functional signs of aging occur at the level of tissues rather than cells and are therefore not readily apparent in traditional cell culture models. Organoids have the potential to effectively balance between the strengths and weaknesses of traditional models of aging. They have sufficient complexity to capture relevant signs of aging at the molecular, cellular, and tissue levels, while presenting an experimentally tractable alternative to animal studies. Organoid systems have been developed to model many human tissues and diseases. Here we provide a perspective on the potential for organoids to serve as models for aging and describe how current organoid techniques could be applied to aging research

    Cfr(B), cfr(C), and a New cfr-Like Gene, cfr(E), in Clostridium difficile Strains Recovered across Latin America

    Get PDF
    Indexación: Scopus.Cfr is a radical S-adenosyl-L-methionine (SAM) enzyme that confers cross-resistance to antibiotics targeting the 23S rRNA through hypermethylation of nucleotide A2503. Three cfr-like genes implicated in antibiotic resistance have been described, two of which, cfr(B) and cfr(C), have been sporadically detected in Clostridium difficile. However, the methylase activity of Cfr(C) has not been confirmed. We found cfr(B), cfr(C), and a cfr-like gene that shows only 51 to 58% protein sequence identity to Cfr and Cfr-like enzymes in clinical C. difficile isolates recovered across nearly a decade in Mexico, Honduras, Costa Rica, and Chile. This new resistance gene was termed cfr(E). In agreement with the anticipated function of the cfrlike genes detected, all isolates exhibited high MIC values for several ribosome-targeting antibiotics. In addition, in vitro assays confirmed that Cfr(C) and Cfr(E) methylate Escherichia coli and, to a lesser extent, C. difficile 23S rRNA fragments at the expected positions. The analyzed isolates do not have mutations in 23S rRNA genes or genes encoding the ribosomal proteins L3 and L4 and lack poxtA, optrA, and pleuromutilin resistance genes. Moreover, these cfr-like genes were found in Tn6218-like transposons or integrative and conjugative elements (ICE) that could facilitate their transfer. These results indicate selection of potentially mobile cfr-like genes in C. difficile from Latin America and provide the first assessment of the methylation activity of Cfr(C) and Cfr(E), which belong to a cluster of Cfr-like proteins that does not include the functionally characterized enzymes Cfr, Cfr(B), and Cfr(D).https://journals.asm.org/doi/10.1128/AAC.01074-1

    Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History

    Get PDF
    Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes

    A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps

    Get PDF
    BACKGROUND: Molecular markers serve three important functions in physical map assembly. First, they provide anchor points to genetic maps facilitating functional genomic studies. Second, they reduce the overlap required for BAC contig assembly from 80 to 50 percent. Finally, they validate assemblies based solely on BAC fingerprints. We employed a six-dimensional BAC pooling strategy in combination with a high-throughput PCR-based screening method to anchor the maize genetic and physical maps. RESULTS: A total of 110,592 maize BAC clones (~ 6x haploid genome equivalents) were pooled into six different matrices, each containing 48 pools of BAC DNA. The quality of the BAC DNA pools and their utility for identifying BACs containing target genomic sequences was tested using 254 PCR-based STS markers. Five types of PCR-based STS markers were screened to assess potential uses for the BAC pools. An average of 4.68 BAC clones were identified per marker analyzed. These results were integrated with BAC fingerprint data generated by the Arizona Genomics Institute (AGI) and the Arizona Genomics Computational Laboratory (AGCoL) to assemble the BAC contigs using the FingerPrinted Contigs (FPC) software and contribute to the construction and anchoring of the physical map. A total of 234 markers (92.5%) anchored BAC contigs to their genetic map positions. The results can be viewed on the integrated map of maize [1,2]. CONCLUSION: This BAC pooling strategy is a rapid, cost effective method for genome assembly and anchoring. The requirement for six replicate positive amplifications makes this a robust method for use in large genomes with high amounts of repetitive DNA such as maize. This strategy can be used to physically map duplicate loci, provide order information for loci in a small genetic interval or with no genetic recombination, and loci with conflicting hybridization-based information

    Transcript levels of Toll-Like receptors 5, 8 and 9 correlate with inflammatory activity in Ulcerative Colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysregulation of innate immune response by Toll-Like Receptors (TLRs) is a key feature in Ulcerative Colitis (UC). Most studies have focused on <it>TLR2, TLR3</it>, and <it>TLR4 </it>participation in UC. However, few studies have explored other TLRs. Therefore, the aim of this study was to evaluate the mRNA profiles of <it>TLR1 to 9 </it>in colonic mucosa of UC patients, according to disease activity.</p> <p>Methods</p> <p>Colonic biopsies were taken from colon during colonoscopy in 51 patients with Ulcerative Colitis and 36 healthy controls. mRNA levels of <it>TLR1 to 9, Tollip</it>, inflammatory cytokines <it>IL6 </it>and <it>TNF </it>were assessed by RT-qPCR with hydrolysis probes. Characterization of <it>TLR9 </it>protein expression was performed by Immunohistochemistry.</p> <p>Results</p> <p>Toll-like receptors <it>TLR8, TLR9</it>, and <it>IL6 </it>mRNA levels were significantly higher in the colonic mucosa from UC patients (both quiescent and active) as compared to healthy individuals (p < 0.04). In the UC patients group the <it>TLR2, TLR4, TLR8 </it>and <it>TLR9 </it>mRNA levels were found to be significantly lower in patients with quiescent disease, as compared to those with active disease (p < 0.05), whereas <it>TLR5 </it>showed a trend (p = 0.06). <it>IL6 </it>and <it>TNF </it>mRNA levels were significantly higher in the presence of active disease and help to discriminate between quiescent and active disease (p < 0.05). Also, <it>IL6 </it>and <it>TNF </it>mRNA positively correlate with TLRs mRNA with the exception for <it>TLR3</it>, with stronger correlations for <it>TLR5, TLR8</it>, and <it>TLR9 </it>(p < 0.0001). <it>TLR9 </it>protein expression was mainly in the lamina propria infiltrate.</p> <p>Conclusions</p> <p>This study demonstrates that <it>TLR2, TLR4, TLR8</it>, and <it>TLR9 </it>expression increases in active UC patients, and that the mRNA levels positively correlate with the severity of intestinal inflammation as well as with inflammatory cytokines.</p

    2007, Physical and genetic structure of the maize genome reflects its complex evolutionary history, PLoS

    Get PDF
    Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes. Citation: Wei F, Coe E, Nelson W, Bharti AK, Engler F, et al. (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3(7): e123
    • …
    corecore