12 research outputs found

    Coronagraphic phase diversity: a simple focal plane sensor for high-contrast imaging

    No full text
    International audienceExoplanet direct imaging is a challenging goal of today's astronomical instrumentation. Several high-contrast imaging instruments dedicated to this task are currently being integrated; they are ultimately limited by the presence of quasi-static speckles in the imaging focal plane. These speckles originate in residual quasi-static optical aberrations, which must be measured and compensated for, typically at a nanometric level. We present a novel focal plane wavefront sensor (WFS) designed for this particular application. It is an extension of the phase diversity technique to coronagraphic imaging. This sensor requires no dedicated hardware and uses only two scientific images differing from a known aberration, which can be conveniently introduced by the adaptive optics subsystem. The aberrations are therefore calibrated all the way down to the scientific camera, without any differential aberrations between the sensor and the scientific camera. We show the potential of this WFS by means of simulations, and we perform a preliminary experimental validation. (C) 2012 Optical Society of Americ

    SELFIE: ITER superconducting joint test facility

    Get PDF
    In the frame of a contract with ITER Organization (IO) on magnets assembly support, CEA designed and built a superconducting joint test facility called SELFIE (ITER SELf-FIEld joint test facility). This facility is installed at CEA Cadarache and started to operate in 2022. This project was initiated by IO for quality control of critical assembly activities. Indeed, the magnet superconducting joints assembly is a special process, for which the performance cannot be verified until the full Tokamak is at cryogenic temperature and obviously repair cannot be envisaged once the machine is assembled. Therefore, the quality control of these joints assembly relies on procedures and qualification of the workers in charge of their implementation. As the joints assemblies will span over three years of the ITER construction, the qualified workers will have to assemble periodically some Production Proof Samples (PPS) joints to train and keep their certification valid. The purpose of SELFIE is to test these PPS in a timely manner. The tests scope is the measurement of the PPS resistance (few nOhms). For that purpose, PPS integrated in ITER conductors length (∼200 kg weight and 3600 mm length) are tested in a liquid helium bath (4.2 K), at nominal current (up to 70 kA), in self-field. The current is provided by a superconducting transformer integrated in the same cryostat as the sample. CEA finalized the preliminary design in 2019, complying with the requirement to achieve a full test sequence within one week (controlled cool down, test and warm-up), with an optimised operation cost. The detailed design phase was started in April 2020 followed by the manufacturing phase up to mid 2021. SELFIE integration and installation were achieved in December 2021 and the cold commissioning done in January 2022. This paper presents the SELFIE test facility and the first results

    The European contribution to the development of the ITER NB injector

    No full text
    This paper reviews the on-going design, R&D and procurement activities, mostly conducted within the ITER framework, on-going in Europe under the co-ordination of Fusion for Energy (F4E), in co-operation with the European Fusion Associations and aimed at the establishment of the ITER Heating Neutral Beam (HNB) system

    The European contribution to the development of the ITER NB injector

    No full text
    This paper reviews the on-going design, R&D and procurement activities, mostly conducted within the ITER framework, on-going in Europe under the co-ordination of Fusion for Energy (F4E), in co-operation with the European Fusion Associations and aimed at the establishment of the ITER Heating Neutral Beam (HNB) system

    Investigation of steady-state tokamak issues by long pulse experiments on Tore Supra

    No full text
    The main results of the Tore Supra experimental programme in the years 2007–2008 are reported. They document significant progress achieved in the domain of steady-state tokamak research, as well as in more general issues relevant for ITER and for fusion physics research. Three areas are covered: ITER relevant technology developments and tests in a real machine environment, tokamak operational issues for high power and long pulses, and fusion plasma physics. Results presented in this paper include test and validation of a new, load-resilient concept of ion cycotron resonance heating antenna and of an inspection robot operated under ultra-high vacuum and high temperature conditions; an extensive experimental campaign (5 h of plasma) aiming at deuterium inventory and carbon migration studies; real-time control of sawteeth by electron cyclotron current drive in the presence of fast ion tails; ECRH-assisted plasma start-up studies; dimensionless scalings of transport and turbulenc

    TORE SUPRA Team Mmembers 1988-2008

    No full text

    Tore Supra Team Members 1988-2008

    No full text

    Contribution of Tore Supra in preparation of ITER

    No full text
    Tore Supra routinely addresses the physics and technology of very long-duration plasma discharges, thus bringing precious information on critical issues of long pulse operation of ITER. A new ITER relevant lower hybrid current drive (LHCD) launcher has allowed coupling to the plasma a power level of 2.7 MW for 78 s, corresponding to a power density close to the design value foreseen for an ITER LHCD system. In accordance with the expectations, long distance (10 cm) power coupling has been obtained. Successive stationary states of the plasma current profile have been controlled in real-time featuring (i) control of sawteeth with varying plasma parameters, (ii) obtaining and sustaining a 'hot core' plasma regime, (iii) recovery from a voluntarily triggered deleterious magnetohydrodynamic regime. The scrape-off layer (SOL) parameters and power deposition have been documented during L-mode ramp-up phase, a crucial point for ITER before the X-point formation. Disruption mitigation studies have been conducted with massive gas injection, evidencing the difference between He and Ar and the possible role of the q = 2 surface in limiting the gas penetration. ICRF assisted wall conditioning in the presence of magnetic field has been investigated, culminating in the demonstration that this conditioning scheme allows one to recover normal operation after disruptions. The effect of the magnetic field ripple on the intrinsic plasma rotation has been studied, showing the competition between turbulent transport processes and ripple toroidal friction. During dedicated dimensionless experiments, the effect of varying the collisionality on turbulence wavenumber spectra has been documented, giving new insight into the turbulence mechanism. Turbulence measurements have also allowed quantitatively comparing experimental results with predictions by 5D gyrokinetic codes: numerical results simultaneously match the magnitude of effective heat diffusivity, rms values of density fluctuations and wavenumber spectra. A clear correlation between electron temperature gradient and impurity transport in the very core of the plasma has been observed, strongly suggesting the existence of a threshold above which transport is dominated by turbulent electron modes. Dynamics of edge turbulent fluctuations has been studied by correlating data from fast imaging cameras and Langmuir probes, yielding a coherent picture of transport processes involved in the SOL. Corrections were made to this article on 6 January 2012. Some of the letters in the text were missing
    corecore